Let $\mathcal{P} \subset \mathbb{R}^{d}$ be a lattice polytope of dimension d. Let b denote the number of lattice points belonging to the boundary of \mathcal{P} and c that to the interior of \mathcal{P}. It follows that, when $c>0$, the volume of \mathcal{P} is bigger than or equal to $(d c+(d-$ 1) $\left.b-d^{2}+2\right) / d$!. A lattice polytope $\mathcal{P} \subset \mathbb{R}^{d}$ of dimension d is called Castelnuovo if $c>0$, and if the volume of \mathcal{P} is $\left(d c+(d-1) b-d^{2}+2\right) / d$!. A quick introduction to Castelnuovo polytopes will be given. No special knowledge will be required to understand my talk.

