Let $\mathcal{P} \subset \mathbb{R}^d$ be a lattice polytope of dimension d. Let b denote the number of lattice points belonging to the boundary of \mathcal{P} and c that to the interior of \mathcal{P} . It follows that, when c > 0, the volume of \mathcal{P} is bigger than or equal to $(dc + (d - 1)b - d^2 + 2)/d!$. A lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ of dimension d is called *Castelnuovo* if c > 0, and if the volume of \mathcal{P} is $(dc + (d - 1)b - d^2 + 2)/d!$. A quick introduction to Castelnuovo polytopes will be given. No special knowledge will be required to understand my talk.