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Abstract

Choose uniform random points X1, ..., X,, in a given convex set and let conv[ X7, ..., X,]
be their convex hull. It is shown that in dimension three the expected volume of this convex
hull is in general not monotone with respect to set inclusion. This answers a question by
Meckes in the negative.

The given counterexample is formed by uniformly distributed points in the three-dimensional
tetrahedron together with a small perturbation of it. As side result we obtain an explicit for-
mula for all even moments of the volume of a random simplex which is the convex hull of
three uniform random points in the tetrahedron and the center of one facet.
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1 INTRODUCTION

Let K C R? be a convex body, i.e., a compact convex set with nonempty interior. Choose

random points Xy,..., X, independently according to the uniform distribution in K. The
convex hull conv[X7y, ..., X,] of these random points is a random polytope contained in K.
Since for n — oo we have conv[X1,...,X,] — K, this polytope is a random approximation

of the convex body K.

It seems to be immediate that increasing the convex body K should also increase its
random approximation. Thus the question we want to address in this paper is the following:
Is the expected volume of conv[Xy, ..., X,] a monotone function in the underlying convex
body?

More precisely, assume that L, K are two d-dimensional convex bodies. Choose independent
uniform random points Y7,...,Y, in L and X1,..., X, in K. Is it true that L C K implies

E|conv[Y7,...,Y, ]| < Elconv[X,...,X,]|? (1)

Here, |A| denotes the d-dimensional Lebesgue measure of the d-dimensional set A. The
starting point for these investigations should be a check for the first nontrivial case n = d+1
where the convex hull is the random simplex spanned by the random points. In this form, the
question was first raised by Meckes [5] in the context of high-dimensional convex geometry.
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In dimension one the monotonicity is immediate. It was proved by Rademacher [7] in 2012
that this is also true in dimension two. Our main result solves the three-dimensional case.

Theorem 1. In R? the expected volume of a random polytope is in general not monotone
under set inclusion. There are three-dimensional convex sets L. C K such that

E|conv[Y1,...,Y4]| > E|conv[ X1, ..., X4]|, 2)

ifYy,...,Yy are chosen uniformly in L and X1,..., X4 in K.

That the general question cannot be answered in the positive was already shown by
Rademacher who, in a groundbreaking paper, gave counterexamples for dimensions d > 4 and
n = d+ 1. It remains an open problem whether there is a number N, maybe depending on
K or only on the dimension of the underlying space, such that monotonicity holds for n > N.

For our proof, we need to construct a pair of convex sets leading to a counterexample.
A serious drawback of this approach is that one is forced to compute the expected volume
of a random simplex which is known to be a notoriously hard problem. In dimension two,
tedious but explicit computations from the nineteenth century yielded several explicit results,
but starting with dimension three, the problem turns out to be out of reach in general. The
only three-dimensional convex sets where the expected volume of a random simplex is known
are the ball [6], the cube [1I] and the tetrahedron [I]. And in higher dimensions only the
ball allows for explicit results. Since numerical computations in dimension three suggest that
in the neighbourhood of the cube and the ball the expected volume of a random simplex is
monotone, the only potentially tractable counterexample could be the tetrahedron and a set
close to it, which also is in accordance with numerical computations by Rademacher[7], and
Reichenwallner and Reitzner|[g].

Already the determination of the expected volume of a random simplex in a tetrahedron
T C R3 was extremely hard. This question is known as Klee's problem, and after many
attemps, erroneous conjectures and numerical estimates, Reitzner and Buchta [I] proved in
a long paper that for uniform random points X;,..., X4 in a tetrahedron of volume one, we

have
13 2

T 720 15015
It seems to be out of reach to compute this expectation for any other three-dimensional

convex set close to T'. Luckily there is a wonderful alternative approach due to Rademacher,
using an infinitesimal variation of convex sets, which is stated in the following Lemma.

E|conv[X7, ..., X4]| =0.01739... (3)

Lemma 1 (Rademacher [7]). For d € N, monotonicity under inclusion of the map
K +— Elconv[ X7, ..., Xat1]|,

where K ranges over all d-dimensional convex bodies and X; are iid uniform points in K,
holds if and only if we have for each convex body K C R? and for each = € bd K that

E|conv[ X1, ..., Xat1]| < Elconv[ X, ..., X4, 2]|.
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Hence we could get the counterexample for Theorem [1] if we succeed in computing the
expectation E|conv[X7, ..., X3, 2]| for a particular z € bd T. Because of symmetry, a suitable
choice for z should be the center ¢ of one of the facets. Yet after several attempts, we observed
that computing E|conv[ X1, ..., X3, || is even more difficult than . Although we only would
have to integrate over three rather than four points, this does not simplify the computation:
the approach in [I] relied on a computation of the expected number of facets rather than that
of the volume, which now involves integrations for two distinct cases, over facets formed by
3 random points and those formed by two random points and ¢ and which turns out to be
even more intricate. Nevertheless we will prove the following proposition.

Proposition 1. For a tetrahedron T of volume one, ¢ the centroid of a facet of T and
X1,..., X4 uniform random points in T, we have that

13 2

E|conv[X1, X, X. 720 ~ 15 015
|conv[ X1, Xo, 3’C]|<720 15015

= E|conv[X;,..., X4]|.

A combination of this result with Rademacher's Lemma [I] yields Theorem [I] The rig-
orous bound in Proposition [I] is obtained by combining methods from stochastic geometry
with results from approximation theory. In the background, first there is a result about the
precise approximation of the absolute value function on [—%, %] by suitable even polynomials,
Lemma To apply this in our context, we use an explicit result for all even moments of
|conv[X7, ..., X3, c]| which — at a first glance maybe surprisingly — is much easier to obtain

then just the single first moment.

Theorem 2. Let k € N and choose three uniform random points X1, ..., X3 in a tetrahedron
of volume one. Then it holds:

X 8 roqn 2k
E‘CO”V[XI,...7X37CH2k = W Z (—1)k 3k (k k )
218 k2K 1s+--5 18

(I + m; +n; + 3)!

3
1=

1

where the range of summation and abbreviations are given in @ The first five even moments
are given at the end of Section [2

We want to mention an application of random convex hulls to statistics. For random points
X1,...,X, chosen in an interval I C R, the convex hull conv[X}, ..., X,] is the well-known
sample range which can also be defined as the interval [X[1}, X{,,)], where X ;) <--- < X, is
the the order statistic of the random points and the endpoints X1}, X, are the extreme points
of the random sample. As mentioned above, it is trivial and immediate that the expected
length of this sample range is a monotone function in I. For a generalization of this question
to higher dimensions, one needs to generalize the definition of sample range, order statistic
and extreme points. Maybe the most natural extension for higher dimensions is to define the
sample range to be the convex hull conv[Xy,..., X,], and the extreme points of the sample
are those on the boundary of the sample range, i.e., the vertices of conv[ X7, ..., X,].
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Hence the question in this paper can be restated: Is the expected volume of the sample
range a monotone function in the underlying distribution? We answer this question in the
negative, and a natural precise formulation of the question for general non-uniform measures
would be interesting.

This paper is organized in the following way. In Section [2| we give a series representation
for even moments of the volume of a random tetrahedron inside a tetrahedron where one
point is fixed to be the centroid of a facet, and we use that to find an exact value for the first
thirteen even moments. In Section [3] we compute an upper bound for the expected volume
of our random tetrahedron, which is a rational affine combination of those even moments.
This upper bound suffices to show that the tetrahedron is a counterexample.

As a general reference for results on random polytopes, we refer to the book on Stochastic
and Integral Geometry by Schneider and Weil [10]. More recent surveys are due to Hug [4]
and Reitzner [9].

2 EVEN MOMENTS OF THE VOLUME OF RANDOM SIMPLICES

Let T be a tetrahedron of volume one and ¢ = (x., y., z.) the centroid of one of its facets.
For random points X, Xo, X5 € T, we write X; = (2, i, 2),% = 1,2,3. The volume of the
simplex with vertices X1, X5, X3 and c is given by

1 y1 2z 1
1 o Y2 Z9 1 —1
conv|X1q,...,Xs,c|]| = |=det =6 "|D(x1,..., ,
Jconv[Xs,. Xy = [gdet [ 2222 %2 ) D@,z
Te Yo Ze 1

and hence by the absolute value of a polynomial D of degree precisely three in the coordinates
of X1, Xo, X3 and c. We are interested in the even moments of |conv[X7, ..., X3, ]|, where
we get rid of the absolute value.

E|conv[X1,...,X3,c]|2k:6_2k/// D(xy,...,z)%"
TTT

d(w1,y1,21) d(22, Y2, 22) d(3, Y3, 23).
Let T, be the specific tetrahedron
T, = {(x,y,z) GRB cx,y,220,x+y+2< 1}7

i.e., that with vertices (0,0,0),(1,0,0), (0,1,0) and (0,0,1). Note that the volume of T,
is 1/6. We choose ¢, = (1/3,1/3,0), the centroid of the facet {(z,y,0) € R : z,y >
0,z +y <1}

Since the expectation E|conv[X7,..., X3, ]| is invariant under volume-preserving affine
transformations, we can use as a representative of a tetrahedron of volume one the tetrahedron
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/6T, and the center </6¢y. We have:

E|conv[X1, ..., X5, ]|?*

=62 / / / D(xl,...,z%c())%

V6T, V6T, V6T,
d(!El, Yt, Zl) d(x% Y2, 22) d(x37 Y3, 23)

:63///13(351,---72%)% d(l‘l,ylyzl)d(l‘my2722)d(333’y3,23)~ (4)
T, T,

o do 1o

Expanding the determinant, the polynomial D can be written as

1
D(a:l, ceey zco) :§ (a:lzg — T123 — T221 + X923 + T321 — T322 — Y122 + Y123
+ Y221 — Y223 — Y321 + Y322 + 3T1Y223 — 3T1Y322
— 3woy123 + 3x2y321 + 3x3y122 — 32339221)-

By the Multinomial Theorem, and using the multinomial coefficient

2% (2k)!
kjl,...,k‘lg 7]€1!--~k‘18!7

the (2k)-th power of it can be rewritten as

— N ’ " Zk .
D(xq,..., zco)zk =32k Z (—1)k 3k <k i >($122)k1 ($1Z3)k2 (3322'1)k3
2%8 k2K 1y--.5 V18

X (223)" (2321)" (2322)" (y122)F7 (y123)" (y221)*
Y223)"0 (Y321)" (y322)"% (219223)"° (1y522) "
Toy123)"° (22y321)" (w3y122)"7 (w39221)"

3
R 2k
:3—2k _1 kgk l1 mi Ny . 5
> e (, T Tt (5)

Si® ki=2k

X (
X (
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Here for abbreviation we use the following notation:

k' = ko + ks + ke + k7 + k1o + k11 + kua + k15 + ks,
K" = kis + k14 + k15 + k16 + k17 + kis,
Iy = k1 + ko + k13 + kg,
m1 = kr + kg + k15 + k17,
ny = k3 + ks + ko + k11 + k16 + k1s,
lg = k3 + kg + k15 + k16, (6)
mg = kg + k1o + k13 + kis,
ng = k1 + ke + k7 + k12 + k1a + k17,
ls = k5 + k¢ + k17 + ks,
m3z = ki1 + k12 + kg + ks,
n3 = ka + ks + ks + k1o + k13 + k5.

Integration of the monomials over the tetrahedron T, gives

111
/xli Y™ 2 d(x,y, 2 /// xhiy™i 2" drdydz
000

To

3:+y+z<1

and the substitution z =t, y =s(1 —t), x =r(1 — s)(1 —t) yields

1 1
= /rl’i dr/sml s)litlds
0 0

1
= B(m¢+17li+2)B(ni+17li+mi+3)
li+1

(l; +m; +n; +3)!7

thi (1 — t)litmit2 gy

o _

where B(-,-) denotes the Beta function. Combining this with equations and gives

Elconv[X1, ..., X3, ]| =

8 NN li'm;!n;!
- -1 k 3k I I [ i+ Tlg
32k—3 Zlg: %( ) </€1,.. k18> L (1 +mi +ny +3)
1 Ri= -

which is Theorem 2] We list the first five even moments of the volume of a random simplex
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in a tetrahedron T of volume one:

1
E|conv[Xi,. .., X3,¢]|* = —— = 0.0005,

2000

E|conv[Xy,..., X3, c]|* = % ~ 1.54771- 1076,

E|conv[Xy, ..., X3,c]|° = m ~ 1.20463 - 1078,
E|conv[Xy, ..., X3, c|® = 14263?));’?200000 ~ 1.67492 - 10710,
E|conv[Xy,..., X3,c]['" = 50919 62160;15;408000 ~ 3.44027 - 10712,

3 PROOF OF THEOREM 1

As described in Section [2] the (2k)-th moment of |conv[X7,..., X3, ]| can be computed,
with fast increasing complexity in k. Hence for some n € N, we want to approximate the
absolute value function by an even polynomial,

n
P(z) = Zaix% with P(z) > |z|, Vz € R,

i=0
or, equivalently, P(x) > x for all z > 0. Note, that in fact we only need P(z) > z for all
x €10, %] since the volume of a tetrahedron in T', where one vertex is fixed to be the centroid
of a facet of T, is not Iargelﬂ than 1/3.

In contrast to the classical problem of best approximation of |z| by polynomials, we are

interested in a one-sided approximation and a certain expected value of the polynomial as
objective. We use the following result for polynomial interpolation.

Lemma 2. LletmeN, n=2m+1, and 0 < zg < ... < x,, be given. Then the system of
equations
P(z;)=zj and P'(x;) =1 forj=0,....,m

determines uniquely a polynomial P(x) = Y7, a;x* with the property P(z) > |z| for all
z € R.

Proof. Let t; = a:? and consider the standard Hermite interpolation problem

Q(t]) = f(t]) and Q/(tj) = f/(tj) fOI’j = 0, ey,

! It is immediately clear that the volume of conv[X7, ..., X3, c] is increased if the points X1, ..., X3 are moved
within their affine hull on an edge of T. Further keeping X5, X3, ¢ fixed, the volume is increased by moving X3
along the edge to one of the vertices of T'. Analogously we increase the volume by moving X5, X3 into the vertices
of T'. Hence for arbitrary choices of X, ..., X3 the volume of conv[X7, ..., X3, c] is always smaller than the volume
of the convex hull of three vertices and ¢ which equals é




Random Approximation of Convex Bodies

for the functions f(t) = vt and Q(t) = >_i-_, a;t". The condition P'(z;) = 1 is equivalent
to Q'(t;) = 1/(24/%;) = f'(t;). Then the interpolation error fulfills, for some £ € [to,t1],
the estimate

(nt1)(¢y M
- e = LS e -7 <o
gl

where the first equality is well known and can be found e.g. in [3, eq. (2.60)] and the last
inequality follows from f("*+1)(¢) < 0 for all ¢. O

We note in passing that for even n =2m and 0 < zp < ... < z,, = 1/3, we only require
the simple interpolation condition P(x,,) = x, in the last point and get P(z) > |z| for all
X E [T, Tim)-

Our aim is to approximate E|conv[X7, ..., X3, ¢]| from above by an even polynomial P
of degree 2n,

E|conv[X1,..., X3, c]| < EP(|Jconv[Xy,..., X3,d)]),
which holds if |z| < P(x) on [, 1]. Moreover, the best polynomial for fixed n € N can be

found via the linear optimization problem

n
min EP(|conv[ X1, ..., X3, c]|) = min > a;EP(|conv[ Xy, ..., X3, d]|)*
Yi=0

1
st. P(z) >z, x € [O, 3} .

Please note that the constraint is infinite dimensional. Relaxing the constraint, we get a lower
bound on EP(|conv[X7y,..., X3,c]|) via the finite dimensional linear program

1
m}inIEP(|conv[X17 oo, X3,(]]) st P(ag) > mg, 24 € {O, 3] , £=0,...,L.

For n =12 and L = 100 equidistant points z,; € [0, 1/3], we numerically compute via Matlab
and the optimization toolbox CVX [2]

EP(|conv[Xq,...,X3,c||) > 0.01746,

yielding that we do not get a sufficiently precise estimate using only n = 12 even moments.
Forn = 13 and L = 1000, we solved the above linear program, computed the interpolation
nodes with the absolute value function numerically, and rationalized these points to

. 1 1 1 2 2 5 4
{1‘3]—0,,6—m}—{83,22,11715711722715}

Using these points for the interpolation problem in Lemma [2| gives an even polynomial
Peori(z) = Zjio a;x?" of degree 26 with the property |x| < Peot(z) and explicitly given
rational coefficients ag, . .., a3, which can be computed via Mathematica/WolframAlpha by
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CoefficientList[InterpolatingPolynomial [{{(1/83)~2,1/83,83/2},{(1/22)"2,1/22,22/2},
{(1/11)~2,1/11,11/2},{(2/16)~2,2/15,15/4} ,{(2/11)~2,2/11,11/4},{(6/22)~2,5/22,22/10},
{(4/15)~2,4/15,15/8}},t]1,t1].

Finally, we use the even moments computed in Section [2] to complete the proof of Theo-

rem [I}

E|conv[ X7, ..., X3, ]| < EPeert(|conv[Xy,. .., X3,c]|)
13

> a;E|conv[Xy, ..., X5, c][*

i=0

— _9215716: 5688870481154067289 71466587267976070649083068559759815228595946585482
53027496 1059567 3181847590012204163284 XS

= 5536952467367872279: 4665 826727651
7 12592136803582459020919668764372661702456688640000000000

1071867247801347471 :
=0.0173791...

< 13 2
720 15015
—_———

=0.01739...

= E|COI’1V[X1, .. .,X4H.
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A COEFFICIENTS OF THE CERTIFYING POLYNOMIAL

As outlined above, the coefficients of the certifying polynomial Pee,t(z) = Zio a;x% can be

computed via Mathematica/WolframAlpha by
CoefficientList[InterpolatingPolynomial [{{(1/83)~2,1/83,83/2},{(1/22)"2,1/22,22/2},
{(1/11)~2,1/11,11/2},{(2/15)~2,2/15,15/4},{(2/11)~2,2/11,11/4},{(5/22) ~2,5/22,22/10},
{(4/15)~2,4/15,15/8}},t],t1].

The outcome being the following

273336906365397426078864562906838565074223151518907516027760030288

ag =
0 50943620940674447995025845049145113414460531981461799361349568433785
172837051889011535335292359292442626554610051119055059052477233305696451
a; =
' 3396241396044963199668389669943007560964035465430786624089971228919000
6927588217235178769557406710109274630390932645803307163220690912724619069771
ag = —
2 194070936916855039981050838282457574912230598024616378519426927366800000
1539701310973043540733663073336277968431072883663044622071160541866514737064773
az =
3 95333091818805984552095148629979159606008013064723835062174630987200000
88327475345398476059138077417627600090239600279861230859750496031195814132503809067
ag = — s
4 21735944934687764477877693887635248390169826978757034394175815865081600000
1506270190983537944333073056260955986674690372081669691029348049238330196984938510981
as =
° 2484107992535744511757450730015456958876551654715089645048664670295040000 ’
246633441732207080900477381555665867092061311488114828666516763515718318471689150031929
ag = —
6 4347188986937552895575538777527049678033965395751406878835163173016320000 ’
150101682160042945470190901995986897880722034759499877158323382538946014306167743194748781
a7 =
7 43471889869375528955755387775270496780339653957514068788351631730163200000 ’
216421540830090047619172672364557230894581364702757249314559035543600303694958394153607999
ag = —
8 1552567495334840319848406706259660599297844784196931028155415418934400000
51427518763299991065677929719998571602636382815033358270014562353465825544222109371642617999
ag =
o 13727965221908061775501701402716998983265153881320232248953146862156800000
956417972117281671478581649589053868970984424939599287708100675016783608647450833493258197
aig = —
1o 14490629956458509651918462591756832260113217985838022929450543910054400
5596009572109106658454688082500249146975210969609085016785660326167107079744423954987539
al] = s
H 7666999976962174419004477561776101724927628563935461867434150216960
2049601492698075453523500707185442228654433119966392837533678044726020212011075186145325
ajp = — s
12 447241665322793507775261191103605933954111666229568608933658762656
618003329365426042046464616484669501570327832872989878011229369057953701120253938097625
a13 = .

49693518369199278641695687900400659328234629581063178770406529184
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