

7: GAUSSIAN FLUCTUATIONS IN MODELS OF STATISTICAL MECHANICS – FINE ASYMPTOTICS FOR THE MAGNETIZATION

> Hanna Döring and Kristina Schubert Univ. Osnabrück and TU Dortmund

> > **Possible connections to projects:** 4, 16, 23, 31, 34

Random Geometric Systems

Magnetization

Consider random spins $\sigma_1, \ldots, \sigma_N \in \{-1, 1\}$ w.r.t. a Gibbs measure of the form

$$\mu_{N,\beta}(\sigma) = \frac{1}{Z_{N,\beta}} e^{-\beta H_{N,\beta}(\sigma)}, \quad \beta > 0$$

with a model-dependent Hamiltonian $H_{N,\beta}$.

Fig. 1: A spin config. (σ_1, σ_2)

Ising-model on Random Graphs – known results

Ising model on a (random) graph $G_N = (\{1, \ldots, N\}, E_N)$ with (random) edge set E_N : $H_N(\sigma) = -C_N \sum \sigma_i \sigma_j$ $(i,j) \in E_N$

Beyond the LLN for **Erdős-Rényi random graphs** with edge prob. $p(N)N \to \infty$: • $\beta < 1$: Gaussian fluctuations of $\mathbb{E}_{\mu_{N,\beta}}[\delta_{\sqrt{N}m_N}]$ w.r.t. randomness coming from G_N .

The magnetization is the average spin $m_N := m_N(\sigma) = \frac{1}{N} \sum_{i=1}^N \sigma_i \in [-1, 1].$

Curie-Weiss Model – known results

Curie-Weiss model

$$H_N^{(CW)}(\sigma) := -\frac{1}{2N} \sum_{i,j=1}^N \sigma_i \sigma_j = -\frac{N}{2} (m_N(\sigma))^2$$

- $\beta \leq 1 : m_N$ concentrates in 0
- $\beta > 1 : m_N$ concentrates in $m(\beta) \neq 0$ or in $-m(\beta)$ For high temperatures $\beta < 1$:
- Gaussian fluctuations : $\sqrt{N}m_N \xrightarrow{d} \mathcal{N}(1, \frac{1}{1-\beta}), N \to \infty.$
- Berry-Esseen bounds by Stein's method and via mod-Gaussian convergence
- Asymptotics for mixed moments are available

Method of Cumulants

For $j \in \mathbb{N}$, the *j*-th cumulant of a real-valued random variable X is given by

 (\mathbf{x}_{z}) $(\cdot,\cdot)_{i} d^{j}$ $(\cdot,\cdot)_{z} [i + X_{z}]$

- Berry-Esseen type bounds and concentration results in the quenched and annealed setting via Stein's method for the larger regime $\sqrt{N}p(N) \to \infty$.

In the **classical Ising model** (i.e. E_N is the grid on $[-N, N]^d \cap \mathbb{Z}^d$) for $d \geq 2$

• Gaussian fluctuations of magnetization (for d = 1 via cumulant bounds)

• for β sufficiently small (or in the presence of an external field): rates of convergence (via cluster expansions and via cumulant bounds/weighted dependency graphs).

Stein's Method

Goal: bound d(X, Z) for $Z \sim \mathcal{N}(0, 1)$ in Wasserstein or Kolmogorov-distance Let f_h be the solution of **Stein's equation**

 $h(x) - \mathbb{E}h(Z) = f'_h(x) - xf_h(x)$

for suitable test functions $h \in \mathcal{H}$, then

 $d_{\mathcal{H}}(X,Z) = \sup_{h \in \mathcal{H}} \left| \mathbb{E}h(X) - \mathbb{E}h(Z) \right| = \sup_{h \in \mathcal{H}} \mathbb{E}[f'_{h}(X) - Xf_{h}(X)].$

Ansatz for dependency graphs: Let $X := \sum_{i=1}^{n} X_i$, $\mathbb{E}X_i = 0$ and $\mathbb{V}X = \sigma^2$ and let L = ([n], E) be a corresponding dependency graph, i.e. for disconnected sets $A_1, A_2 \subset [n]$ we have $\{X_i : i \in A_1\}$ and $\{X_i : i \in A_2\}$ are independent. The proof consists of the following steps:

$$\kappa_j(X) := (-\mathbf{i})^j \frac{\mathrm{d}t^j}{\mathrm{d}t^j} \log \mathbb{E}\left[\mathrm{e}^{itA}\right]\Big|_{t=0},$$

if the derivative exists.

The **Statulevičius condition** $|\kappa_j(X)| \leq \frac{(j!)^{1+\gamma}}{\Lambda j-2}$ for $j \geq 3$ with $\gamma \geq 0, \Delta > 0$ implies • normal approximation with Cramér correction and a rate of convergence in Kolmogorov

distance

• mod-Gauss convergence, i.e. $\lim_{n\to\infty} \mathbb{E}\left[e^{itX_n}\right] / \mathbb{E}\left[e^{itZ_n}\right] = \Phi(t)$ for some Φ . Idea for application: Use known moment expansion.

Block Spin Ising Models

For
$$\{1, \ldots, N\} = S \uplus S^c$$
, $|S| = \frac{N}{2}$, N even and $0 \le \alpha \le \beta$:
 $H_{N,\alpha,\beta,S}(\sigma) := -\frac{\beta}{2N} \sum_{i,j \text{ in same block}} \sigma_i \sigma_j - \frac{\alpha}{2N} \sum_{i,j \text{ in diff. blocks}} \sigma_i \sigma_j$.
For $\mu_{N,\alpha,\beta}(\sigma) := \frac{e^{-H_{N,\alpha,\beta}(\sigma)}}{Z_{N,\alpha,\beta}}$, the vector of block magnetizations
 $m^N := (\frac{2}{N} \sum_{i \in S} \sigma_i, \frac{2}{N} \sum_{i \notin S} \sigma_i)$ has Gaussian fluctuations for
 $\alpha + \beta < 2$. Further results for moments are available.

1. $W_i = \sum_{j \notin N_i} X_j$ for $N_i := \{k : k \text{ neighbour of } i \text{ in } L\}$, so $\mathbb{E}X_i f(W_i) = 0$. 2. Taylor expansion $f(X) \approx f(W_i) + (X - W_i)f'(W_i)$. This yields

$$\mathbb{E}[Xf(X)] = \sum_{i=1}^{n} \mathbb{E}\left[X_i(f(X) - f(W_i))\right] \approx \mathbb{E}\left[\sum_{\substack{i=1 \\ =T \approx \sigma^2}}^{n} X_i(X - W_i) \underbrace{f'(W_i)}_{\approx f'(X)}\right] \tag{(4)}$$

3. bound $\mathbb{V}(T)$ and d(X, Z) in terms of the maximal degree of the dependency graph.

Weighted Dependency Graphs

A graph G = (A, E) with edge weights $w_e \in [0, 1]$ is called a (C_1, C_2, \ldots) -weighted dependency graph for a family of random variables $\{Y_{\alpha} : \alpha \in A\}$ if, for any multiset $B = \{\alpha_1, \ldots, \alpha_r\} \subset A$, the following bound on cumulants holds

 $|\kappa(Y_{\alpha}, \alpha \in B)| \leq C_r \max_{T \text{ spanning tree of } G[B]} \text{weight}(T),$

Idea: For random variables that obey a weighted dependency graph structure there are additional sums in the decomposition of $\mathbb{E}Xf(X)$ in (1), but instead of the maximal degree, one can use the **weighted degree**.

Objectives 1 and Strategies

Objectives 2 and Strategies

Derive the Statulevičius condition for the magnetization in the ... **1.1** classical Curie-Weiss model via known expansions for the moments **1.2** Ising models with random interactions on an Erdős-Rényi random graph: start with CLT in the annealed setting and derive representations for cumulants **1.3** Block Spin Ising model (2d-vector) with two and more blocks: multivariate cum.

2.1 Generalize Stein's method to bound the Kolmogorov distance for sums of weakly dependent random variables

2.2 Application of **2.1** to the d-dimensional Ising model

2.3 Consider various applications of weighted dependency graphs for models beyond statistical mechanics, e.g. number of crossings in random pairing.

References

- H. Döring, S. Jansen, K. Schubert. The method of cumulants for the normal approx*imation*. In: Probab. Surv. 19 (2022), pp. 185–270.
- H. Knöpfel, M. Löwe, K. Schubert, A. Sinulis. Fluctuation results for general block spin Ising models. In: J. Stat. Phys. 178.5 (2020), pp. 1175–1200.

References

• C. Betken, H. Döring, M. Ortgiese. *Fluctuations in a general preferential attachment* model via Stein's method. In: Random Structures Algorithms 55.4 (2019), pp. 808–830. • J. Dousse, V. Féray. Weighted dependency graphs and the Ising model. In: Ann. Inst. Henri Poincaré D 6.4 (2019), pp. 533–571.

(1)