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Magnetization

Consider random spins σ1, . . . , σN ∈ {−1, 1} w.r.t. a Gibbs mea-
sure of the form

µN,β(σ) =
1

ZN,β
e−βHN,β(σ), β > 0

with a model-dependent Hamiltonian HN,β.

σ1 = 1

σ2 = −1

Fig. 1: A spin config. (σ1, σ2)

The magnetization is the average spin mN := mN(σ) =
1
N

∑N
i=1 σi ∈ [−1, 1].

Curie-Weiss Model – known results

Curie-Weiss model

H
(CW )
N (σ) := − 1

2N

N∑
i,j=1

σiσj = −N

2
(mN(σ))

2

� β ≤ 1 : mN concentrates in 0

� β > 1 : mN concentrates in m(β) ̸= 0 or in −m(β)

For high temperatures β < 1:

�Gaussian fluctuations :
√
NmN

d−→ N (1, 1
1−β), N → ∞.

�Berry-Esseen bounds by Stein’s method and via mod-Gaussian convergence

�Asymptotics for mixed moments are available

Method of Cumulants

For j ∈ N, the j-th cumulant of a real-valued random variable X is given by

κj(X) := (−i)j
dj

dtj
logE

[
eitX

]∣∣∣
t=0

,

if the derivative exists.

The Statulevičius condition |κj(X)| ≤ (j!)1+γ

∆j−2
for j ≥ 3 with γ ≥ 0, ∆ > 0 implies

� normal approximation with Cramér correction and a rate of convergence in Kolmogorov
distance

�mod-Gauss convergence, i.e. limn→∞E
[
eitXn

]
/E

[
eitZn

]
= Φ(t) for some Φ.

Idea for application: Use known moment expansion.

Block Spin Ising Models

For {1, . . . , N} = S ⊎ Sc, |S| = N
2 , N even and 0 ≤ α ≤ β:

HN,α,β,S(σ) := − β

2N

∑
i,j in same block

σiσj−
α

2N

∑
i,j in diff. blocks

σiσj.

For µN,α,β(σ) :=
e−HN,α,β(σ)

ZN,α,β
, the vector of block magnetizations

mN := ( 2N
∑

i∈S σi,
2
N

∑
i/∈S σi) has Gaussian fluctuations for

α + β < 2. Further results for moments are available.
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Objectives 1 and Strategies

Derive the Statulevičius condition for the magnetization in the . . .

1.1 classical Curie-Weiss model via known expansions for the moments

1.2 Ising models with random interactions on an Erdős-Rényi random graph:
start with CLT in the annealed setting and derive representations for cumulants

1.3Block Spin Ising model (2d-vector) with two and more blocks: multivariate cum.
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Ising-model on Random Graphs – known results

Ising model on a (random) graph GN = ({1, . . . , N}, EN) with (random) edge set EN :

HN(σ) = −CN

∑
(i,j)∈EN

σiσj

Beyond the LLN for Erdős-Rényi random graphs with edge prob. p(N)N → ∞:

� β < 1: Gaussian fluctuations of EµN,β
[δ√NmN

] w.r.t. randomness coming from GN .

�Berry-Esseen type bounds and concentration results in the quenched and annealed set-
ting via Stein’s method for the larger regime

√
Np(N) → ∞.

In the classical Ising model (i.e. EN is the grid on [−N,N ]d ∩ Zd) for d ≥ 2

�Gaussian fluctuations of magnetization (for d = 1 via cumulant bounds)

� for β sufficiently small (or in the presence of an external field): rates of convergence (via
cluster expansions and via cumulant bounds/weighted dependency graphs).

Stein’s Method

Goal: bound d(X,Z) for Z ∼ N (0, 1) in Wasserstein or Kolmogorov-distance
Let fh be the solution of Stein’s equation

h(x)− Eh(Z) = f ′
h(x)− xfh(x)

for suitable test functions h ∈ H, then

dH(X,Z) = sup
h∈H

∣∣Eh(X)− Eh(Z)
∣∣ = sup

h∈H
E[f ′

h(X)−Xfh(X)].

Ansatz for dependency graphs:
Let X :=

∑n
j=1Xj, EXi = 0 and VX = σ2 and let L = ([n], E) be a corresponding

dependency graph, i.e. for disconnected sets A1, A2 ⊂ [n] we have {Xi : i ∈ A1} and
{Xi : i ∈ A2} are independent.
The proof consists of the following steps:

1.Wi =
∑

j /∈Ni
Xj for Ni := {k : k neighbour of i in L}, so EXif (Wi) = 0.

2. Taylor expansion f (X) ≈ f (Wi) + (X −Wi)f
′(Wi).

This yields

E[Xf (X)] =

n∑
i=1

E
[
Xi

(
f (X)− f (Wi)

)]
≈ E

n∑
i=1

Xi(X −Wi)︸ ︷︷ ︸
=T≈σ2

f ′(Wi)︸ ︷︷ ︸
≈f ′(X)

(1)

3. bound V(T ) and d(X,Z) in terms of the maximal degree of the dependency graph.

Weighted Dependency Graphs

A graph G = (A,E) with edge weights we ∈ [0, 1] is called a (C1, C2, . . .)-weighted
dependency graph for a family of random variables {Yα : α ∈ A} if, for any multiset
B = {α1, . . . , αr} ⊂ A, the following bound on cumulants holds

|κ(Yα, α ∈ B)| ≤ Cr max
T spanning tree of G[B]

weight(T ),

Idea: For random variables that obey a weighted dependency graph structure there are
additional sums in the decomposition of EXf (X) in (1), but instead of the maximal
degree, one can use the weighted degree.

Objectives 2 and Strategies

2.1Generalize Stein’s method to bound the Kolmogorov distance for sums of weakly depen-
dent random variables

2.2Application of 2.1 to the d-dimensional Ising model

2.3Consider various applications of weighted dependency graphs for models beyond statis-
tical mechanics, e.g. number of crossings in random pairing.
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