On h-vectors of broken circuit complexes

Dinh Van Le

(Univesität Osnabrück)
Osnabrück, October 10th, 2015

Outline

1 Broken circuit complexes

2 The Orlik-Terao algebra

3 Series-parallel networks

4 An open problem

Chromatic polynomials

$G=(V, E):$ a graph, $|V|=n$.
■ Birkhoff [Bir12]: For $t \in \mathbb{N}$, let $\chi(G, t)$ be the number of proper colorings of G with t colors, i.e., the number of maps $\gamma: V \rightarrow\{1,2, \ldots, t\}$ such that $\gamma(u) \neq \gamma(v)$ whenever $\{u, v\} \in E$. Then $\chi(G, t)$ is a polynomial in t of degree n, called the chromatic polynomial of G :

$$
\chi(G, t)=f_{0} t^{n}-f_{1} t^{n-1}+f_{2} t^{n-2}-\cdots+(-1)^{n-1} f_{n-1} t
$$

- Whitney [Wh32a]: Assign a linear order to E. A broken circuit is a cycle of G with the least edge removed. Then
$f_{i}=\sharp\{i$-subsets of E which contain no broken circuit $\}$.

Example

- Broken circuit: $\{2,3\}$.

■ $f_{0}=\sharp\{\emptyset\}=1, f_{1}=\sharp\{\{1\},\{2\},\{3\}\}=3$,
$f_{2}=\sharp\{\{1,2\},\{1,3\}\}=2$.
■ $\chi(G, t)=t^{3}-3 t^{2}+2 t=t(t-1)(t-2)$.

Broken circuit idea

- Rota [Rot64]: extended Whitney's formula to characteristic polynomials of matroids.
- Wilf [Wil76]: the collection of all subsets of E which contain no broken circuit forms a simplicial complex.
- Brylawski [Bry77]: defined broken circuit complexes of matroids.

Matroids

Whitney [Wh35]: A matroid \mathbf{M} consists of a finite ground set E and a non-empty collection \mathcal{I} of subsets of E, called independent sets, satisfying the following conditions:

1 subsets of independent sets are independent,
2 for every subset X of E, all maximal independent subsets of X have the same cardinality, called the rank of X.
A subset of E is called dependent if it is not a member of \mathcal{I}. Minimal dependent sets are called circuits. The rank of E is also called the rank of \mathbf{M} and denoted by $r(\mathbf{M})$.

Examples

1 Linear/representable matroids: Let W be a vector space over a field K and E a finite subset of W. The linear matroid of E :

- ground set: E,
- independent sets: linearly independent subsets of E. Matroids of this type are called representable over K.
2 Cycle/graphic matroids: Let G be a graph with edge set E. The cycle matroid $\mathbf{M}(G)$:
- ground set: E,
- independent sets: subsets of E containing no cycle.

Matroids of this type are called graphic matroids.

Broken circuit complexes

Let \mathbf{M} be a matroid on the ground set E. Assign a linear order $<$ to E. A broken circuit of \mathbf{M} is a subset of E of the form $C-e$, where C is a circuit of \mathbf{M} and e is the least element of C. The broken circuit complex of $(\mathbf{M},<)$, denoted $B C_{<}(M)$ (or briefly $B C(\mathbf{M})$), is defined by

$$
B C(\mathbf{M})=\{F \subseteq E \mid F \text { contains no broken circuit }\} .
$$

Broken circuit complexes

- $\operatorname{dim} B C(\mathbf{M})=r(\mathbf{M})-1$.
- $B C(\mathbf{M})$ is a cone with apex e_{0}, where e_{0} is the smallest element of E. The restriction of $B C(\mathbf{M})$ to $E-e_{0}$ is called the reduced broken circuit complex, denoted $\overline{B C}(\mathbf{M})$.
- Provan [Pro77]: $B C(\mathbf{M})$ is shellable.

Combinatorial aspect of broken circuit complexes

■ Let $r=r(\mathbf{M})$. Let $\chi(\mathbf{M}, t)=\sum_{X \subseteq E}(-1)^{|X|} t^{r-r(X)}$ be the characteristic polynomial of \mathbf{M}. Then
Rota [Rot64]: $\chi(\mathbf{M}, t)=f_{0} t^{r}-f_{1} t^{r-1}+\cdots+(-1)^{r} f_{r}$, where $\left(f_{0}, f_{1}, \ldots, f_{r}\right)$ is the f-vector of $B C(\mathbf{M})$: $f_{i}=\sharp$ faces of $B C(\mathbf{M})$ of cardinality i.
■ $\chi(G, t)=t^{c(G)} \chi(\mathbf{M}(G), t)$, where $c(G)$ is the number of connected components of G.
■ The h-vector $\left(h_{0}, h_{1}, \ldots, h_{r}\right)$ of $B C(\mathbf{M})$:
$\sum_{i=0}^{r} f_{i}(t-1)^{r-i}=\sum_{i=0}^{r} h_{i} t^{r-i}$, or equivalently,

$$
\begin{aligned}
f_{i} & =\sum_{j=0}^{i}\binom{r-j}{i-j} h_{j}, \quad i=0, \ldots, r, \\
h_{i} & =\sum_{j=0}^{i}(-1)^{i-j}\binom{r-j}{i-j} f_{j}, \quad i=0, \ldots, r .
\end{aligned}
$$

Combinatorial aspect of broken circuit complexes

- Wilf [Wil76]: Which polynomials are chromatic?

■ Problem: Characterize f-vectors (h-vectors) of broken circuit complexes.

- Conjecture (Welsh [Wel76]): Let $\left(f_{0}, f_{1}, \ldots, f_{r}\right)$ be the f-vector of $B C(\mathbf{M})$. Then $f_{0}, f_{1}, \ldots, f_{r}$ form a log-concave sequence, i.e., $f_{i-1} f_{i+1} \leq f_{i}^{2}$ for $0<i<r$. \rightsquigarrow solved by Adiprasito-Huh-Katz.
- Conjecture (Hoggar [Hog74]): The h-vector of $B C(\mathbf{M})$ is a log-concave sequence.
\rightsquigarrow verified by Huh [Huh15] for the case \mathbf{M} is representable over a field of characteristic zero.

Algebraic aspect of broken circuit complexes

The broken circuit complex of the underlying matroid of a hyperplane arrangement induces

- a basis for the Orlik-Solomon algebra (Orlik-Solomon [OS80], Björner [Bjo82], Gel'fand-Zelevinsky [GZ86], Jambu-Terao [JT89]).
- a basis for the Orlik-Terao algebra (Proudfoot-Speyer [PS06]).

Outline

1 Broken circuit complexes

2 The Orlik-Terao algebra

3 Series-parallel networks

4 An open problem

Hyperplane arrangements

■ A hyperplane arrangement in a K-vector space V is a finite set of linear hyperplanes

$$
\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\},
$$

where $H_{i}=\operatorname{ker} \alpha_{i}$ with $\alpha_{i} \in V^{*}$.

- The linear matroid of $\alpha_{1}, \ldots, \alpha_{n}$ is called the underlying matroid of \mathcal{A}, denoted by $\mathbf{M}(\mathcal{A})$.
- Problem: Decide whether a certain property of \mathcal{A} is combinatorial, i.e., determined by $\mathbf{M}(\mathcal{A})$.

Hyperplane arrangements

■ Zaslavsky [Zas75]: Let \mathcal{A} be a real arrangement. Then the number of regions of the complement $\mathcal{M}(\mathcal{A}):=V-\bigcup_{i=1}^{n} H_{i}$ is $|\chi(\mathbf{M}(\mathcal{A}),-1)|$.

- Orlik-Solomon [OS80]: If \mathcal{A} is a complex arrangement, then the cohomology ring of $\mathcal{M}(\mathcal{A})$ is isomorphic to the so-called Orlik-Solomon algebra of \mathcal{A}, which is combinatorially determined.
- Rybnikov [Ryb11]: The fundamental group of $\mathcal{M}(\mathcal{A})$ is not combinatorial.
■ Conjecture (Terao [Te80]): Freeness of arrangements is combinatorial.

2-formal arrangements

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ with $H_{i}=\operatorname{ker} \alpha_{i}, S=K\left[x_{1}, \ldots, x_{n}\right]$ a polynomial ring. The relation space $F(\mathcal{A})$ of \mathcal{A} is the kernel of the K-linear map

$$
S_{1}=\bigoplus_{i=1}^{n} K x_{i} \rightarrow V^{*}, x_{i} \mapsto \alpha_{i} \text { for } i=1, \ldots, n
$$

Thus relations come from dependencies: if $\left\{\alpha_{i_{1}}, \ldots, \alpha_{i_{m}}\right\}$ is dependent and $\sum_{j=1}^{m} a_{j} \alpha_{i_{j}}=0$, then $r=\sum_{j=1}^{m} a_{j} x_{i_{j}} \in F(\mathcal{A})$.

- Falk-Randell [FR86]: \mathcal{A} is called 2-formal if $F(\mathcal{A})$ is spanned by relations of length 3 (i.e., having 3 nonzero coefficients).
- Yuzvinsky [Yuz93]: 2-formality is not combinatorial.
- Schenck-Tohaneanu [ST09]: characterized 2-formality in terms of the Orlik-Terao.

The Orlik-Terao algebra

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ with $H_{i}=\operatorname{ker} \alpha_{i}$. The Orlik-Terao algebra of \mathcal{A} is the subalgebra of the field of rational functions on V generated by reciprocals of the α_{i} :

$$
C(\mathcal{A}):=K\left[1 / \alpha_{1}, \ldots, 1 / \alpha_{n}\right] .
$$

Write $C(\mathcal{A})=K\left[x_{1}, \ldots, x_{n}\right] / I(\mathcal{A})$, then $I(\mathcal{A})$ is the Orlik-Terao ideal of \mathcal{A}.

■ Orlik-Terao [OT94]: answered a question of Aomoto in the context of hypergoemetric functions.
■ Schenck-Tohaneanu [ST09]: characterized 2-formality in terms of the Orlik-Terao.

- Sanyal-Sturmfels-Vinzant [SSV13]: $C(\mathcal{A})$ is the coordinate ring of the reciprocal plane, which relates to a model in theoretical neuroscience.

The broken circuit complex and the Orlik-Terao algebra

■ Proudfoot-Speyer [PS06]: Let \mathcal{A} be an arrangement. Then the Stanley-Reisner ideal of any broken circuit complex of $\mathbf{M}(\mathcal{A})$ is an initial ideal of $I(\mathcal{A})$. In particular, $C(\mathcal{A})$ is a Cohen-Macaulay ring.

- Question: When are the broken circuit complex and the Orlik-Terao algebra complete intersections or Gorenstein?

Gorenstein and complete intersection properties

L. [Le14]:

■ Let \mathbf{M} be a matroid. Then $B C(\mathbf{M})$ is Gorenstein iff it is a complete intersection.

- Let \mathcal{A} be an arrangement. Let $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ be the h-vector of $B C(\mathbf{M}(\mathcal{A}))$ with s being the largest index i such that $h_{i} \neq 0$. Then the following conditions are equivalent:
$1 C(\mathcal{A})$ is Gorenstein.
$2 h_{i}=h_{s-i}$ for $i=0, \ldots, s$.
$3 h_{0}=h_{s}$ and $h_{1}=h_{s-1}$.
4 Every connected component of $\mathbf{M}(\mathcal{A})$ is either a coloop or a parallel connection of circuits.
5 There exists an ordering < such that $B C_{<}(\mathrm{M}(\mathcal{A}))$ is Gorenstein/a complete intersection.
6 $C(\mathcal{A})$ is a complete intersection.

Outline

1 Broken circuit complexes

2 The Orlik-Terao algebra

3 Series-parallel networks

4 An open problem

Series-parallel networks

- A 2-connected graph is a series-parallel network if it can be obtained from the complete graph K_{2} by subdividing and duplicating edges.
- Example:

Series-parallel networks

- Dirac [Di52], Duffin [Duf65]: A loopless, 2-connected graph is a series-parallel network iff it has no subgraph that is a subdivision of K_{4}.
- Brylawski [Bry71]: Let G be a 2-connected graph. Let $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ be the h-vector of $B C(\mathbf{M}(G))$ with $h_{s} \neq 0$. Then G is a series-parallel network iff $h_{s}=1$ (i.e., $h_{s}=h_{0}$).

Ear decompositions

- Let G be a loopless connected graph. An ear decomposition of G is a partition of the edges of G into a sequence of ears $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ such that:
(ED1) π_{1} is a cycle and each π_{i} is a simple path (i.e., a path that does not intersect itself) for $i \geq 2$,
(ED2) each end vertex of $\pi_{i}, i \geq 2$, is contained in some π_{j} with $j<i$,
(ED3) no internal vertex of π_{i} is in π_{j} for any $j<i$.
- Whitney [Wh32b]: A graph with at least 2 edges admits an ear decomposition iff it is 2 -connected.

Nested ear decompositions

■ Let $\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ be an ear decomposition of a graph G. Then π_{i} is called nested in $\pi_{j}, j<i$, if both end vertices of π_{i} belong to π_{j} and at least one of them is an internal vertex of π_{j}.

- If π_{i} is nested in π_{j}, the nest interval of π_{i} in π_{j} is the path in π_{j} between the two end vertices of π_{i}.
- The ear decomposition Π is called nested if the following conditions hold:
(N1) for each $i>1$ there exists $j<i$ such that π_{i} is nested in π_{j},
(N2) if π_{i} and π_{k} are both nested in π_{j}, then either their nest intervals in π_{j} are disjoint, or one nest interval contains the other.

Example

A nested ear decomposition of G : $\pi_{1}=\{1,2,3,4,5\}$, $\pi_{2}=\{6\}, \pi_{3}=\{7\}, \pi_{4}=\{8,9,10\}, \pi_{5}=\{11,12\}$.

Nested ear decompositions

Eppstein [Epp92]: Let G be a 2-connected graph. Then the following conditions are equivalent:
$1 G$ is a series-parallel network;
$2 G$ has a nested ear decomposition;
3 every ear decomposition of G is nested.

Nested ear decompositions and h-vectors of BCC

■ Let $\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ be a nested ear decomposition of a series-parallel network G. If I is a nest interval, set
$\lambda(I):=\min \left\{\right.$ length (I), length $\left(\pi_{i}\right) \mid I$ is the nest interval of $\left.\pi_{i}\right\}$.
■ Define $p(\Pi ; G)=$ number of nest interval I such that $\lambda(I)>1$.

- L. [Le16]: Let G be a series-parallel network. Let $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ be the h-vector of $B C(\mathbf{M}(G))$ with $h_{s} \neq 0$. Then $h_{s-1}-h_{1}=p(\Pi ; G)$ for any ear decomposition Π of G.

Example

■ Nested intervals: $I_{1}=\{3\}, I_{2}=\{4,5\}, I_{3}=\{9,10\}$.
■ $\lambda\left(I_{1}\right)=\lambda\left(I_{2}\right)=1, \lambda\left(I_{3}\right)=2 \Rightarrow h_{5}-h_{1}=1$.

Outline

1 Broken circuit complexes

2 The Orlik-Terao algebra

3 Series-parallel networks

4 An open problem

Independence complexes

■ Let \mathbf{M} be a matroid with collection of independent sets \mathcal{I}. Then \mathcal{I} forms a simplicial complex, called the independence complex of \mathbf{M}, denoted by $\operatorname{IN}(\mathbf{M})$.

- $B C(\mathbf{M}) \subseteq I N(\mathbf{M})$.
- Brylawski [Bry77]: Given a matroid \mathbf{M}, there exists a matroid \mathbf{M}^{\prime} such that $I N(\mathbf{M})=\overline{B C}\left(\mathbf{M}^{\prime}\right)$.
- $\{h$-vectors of independence complexes $\} \subset\{h$-vectors of broken circuit complexes $\}$.

h-vectors of independence complexes

■ Problem: Characterize h-vectors (f-vectors) of independence complexes.

- Conjecture (Stanley [Sta77]): h-vectors of independence complexes are pure O-sequences.
■ Conjecture (Hibi [Hi92]): Let $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ be the h-vector of $\operatorname{IN}(\mathrm{M})$. Then

$$
\begin{aligned}
& h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor s / 2\rfloor} \\
& h_{i} \leq h_{s-i} \text { for } i=0, \ldots,\lfloor s / 2\rfloor
\end{aligned}
$$

■ Chari [Cha97]: proved Hibi's conjecture.

h-vectors of broken complexes

- Conjecture (Swartz [Swa03]): Let $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ be the h-vector of $B C(\mathbf{M})$ with $h_{s} \neq 0$. Then

$$
h_{i} \leq h_{s-i} \text { for } i=0, \ldots,\lfloor s / 2\rfloor .
$$

■ L. [Le16]: Let $\mathbf{M}=\mathbf{M}(G)$, where G is a series-parallel network. Let $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$ be the h-vector of $B C(\mathbf{M})$ with $h_{s} \neq 0$.
1 If $h_{s-1}-h_{1}=1$, then $h_{i} \leq h_{s-i}$ for $i=0, \ldots,\lfloor s / 2\rfloor$.
$2 h_{2} \leq h_{s-2}$ (when $s \geq 4$).

Thank you!

References I

[Bir12] G. D. Birkhoff, A Determinant Formula for the Number of Ways of Coloring a Map. Ann. of Math. 14 (1912), 42-46.
[Bjo82] A. Björner, On the homology of geometric lattices. Algebra Universalis 14 (1982), no. 1, 107-128.
[Bry71] T. Brylawski, A combinatorial model for series-parallel networks. Trans. Amer. Math. Soc. 154 (1971), 1-22.
[Bry77] T. Brylawski, The broken-circuit complex. Trans. Amer. Math. Soc. 234 (1977), 417-433.
[Cha97] M. K. Chari, Two decompositions in topological combinatorics with applications to matroid complexes. Trans. Am. Math. Soc. 349 (1997), 3925-3943.

References II

[Di52] G. A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc. 27 (1952), 85-92.
[Duf65] R. J. Duffin, Topology of series-parallel networks. J. Math. Anal. Appl. 10 (1965), 303-318.
[Epp92] D. Eppstein, Parallel recognition of series-parallel graphs. Inform. and Comput. 98 (1992), no. 1, 41-55.
[FR86] M. Falk and R. Randell, On the homotopy theory of arrangements. Adv. Stud. Pure. Math. 8 (1986), 101-124.

References III

[GZ86] I. M. Gel'fand and A. V. Zelevinsky, Algebraic and combinatorial aspects of the general theory of hypergeometric functions. Funct. Anal. Appl. 20 (1986), 183-197.
[Hi92] T. Hibi, Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Reisner rings of distributive lattices. Pacific J. Math. 154(1992), 253-264.
[Hog74] S. Hoggar, Chromatic polynomials and logarithmic concavity. J. Combin. Theory Ser. B 16 (1974), 248-254.
[Huh15] J. Huh, h-vectors of matroids and logarithmic concavity. Adv. Math. 270 (2015), 49-59.

References IV

[JT89] M. Jambu and H. Terao, Arrangements of hyperplanes and broken circuits. In Singularities (lowa City, IA, 1986), pp. 147-162, Contemp. Math., 90, Amer. Math. Soc., Providence, RI, 1989.
[Le14] D. V. Le, On the Gorensteinness of broken circuit complexes and Orlik-Terao ideals. J. Combin. Theory Ser. A 123 (2014), no. 1, 169-185.
[Le16] D. V. Le, Broken circuit complexes of series-parallel networks. European J. Combin. 51 (2016), 12-36.
[OS80] P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes. Invent. Math. 56 (1980), 167-189.

References V

[OT94] P. Orlik and H. Terao, Commutative algebras for arrangements. Nagoya Math. J. 134 (1994), 65-73.
[PS06] N. Proudfoot and D. Speyer, A broken circuit ring. Beiträge Algebra Geom. 47 (2006), no. 1, 161-166.
[Pro77] J. S. Provan, Decompositions, shellings, and diameters of simplicial complexes and convex polyhedra. Thesis, Cornell University, Ithaca, NY, 1977.
[Rot64] G.-C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie and Verw. Gebiete 2 (1964), 340-368.

References VI

[Ryb11] G. L. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement. Funct. Anal. Appl. 45 (2011), no. 2, 137-148.
[SSV13] R. Sanyal, B. Sturmfels and C. Vinzant, The entropic discriminant. Adv. Math. 244 (2013), 678-707.
[ST09] H. Schenck and Ş. Tohǎneanu, The Orlik-Terao algebra and 2-formality. Math. Res. Lett. 16 (2009), 171-182.
[Sta77] R. P. Stanley, Cohen-Macaulay complexes. In Higher combinatorics, pp. 51-62, Reidel, Dordrecht, 1977.
[Swa03] E. Swartz, g-elements of matroid complexes. J. Combin. Theory Ser. B 88 (2003), no. 2, 369-375.

References VII

[Te80] H. Terao, Arrangements of hyperplanes and their freeness I, II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 293-320.
[Wel76] D. Welsh, Matroid theory. Academic Press, London, 1976.
[Wh32a] H. Whitney, A logical expansion in mathematics. Bull. Amer. Math. Soc. 38 (1932), 572-579.
[Wh32b] H. Whitney, Non-separable and planar graphs. Trans. Amer. Math. Soc. 34 (1932), no. 2, 339-362.
[Wh35] H. Whitney, On the abstract properties of linear dependence. Amer. J. Math. 57 (1935), no. 3, 509-533.

References VIII

[Wil76] H. Wilf, Which polynomials are chromatic?. Proc. 1973 Rome International Colloq. Combinatorial Theory I, pp. 247-257, Accademia Nazionale dei Lincei, Rome, 1976.
[Yuz93] S. Yuzvinsky, First two obstructions to the freeness of arrangements. Trans. Amer. Math. Soc. 335 (1993), 231-244.
[Zas75] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 1 (1975), issue 1, no. 154.

