Gap vectors of real projective varieties

Martina Juhnke-Kubitzke
(joint with Greg Blekherman, Sadik Iliman, Mauricio Velasco)
Institute of Mathematics, University of Osnabrück

October 7 ${ }^{\text {th }}, 2015$

UNIVERSITÄT OSNABRÜCK

1 Introduction: The classical setting

2 Dimensions of the faces of P_{X} and Σ_{X}

3 Dimensional differences and gap vectors

Outline

1 Introduction: The classical setting

2 Dimensions of the faces of P_{X} and Σ_{X}

3 Dimensional differences and gap vectors

The main actors

A polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ is non-negative if $p(x) \geq 0$ for all $x \in \mathbb{R}^{m}$.

The main actors

A polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ is non-negative if $p(x) \geq 0$ for all $x \in \mathbb{R}^{m}$.

A polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ is a sum of squares if there exist $p_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ such that $p=\sum_{i} p_{i}^{2}$.

The main actors

A polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ is non-negative if $p(x) \geq 0$ for all $x \in \mathbb{R}^{m}$.

A polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ is a sum of squares if there exist $p_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$ such that $p=\sum_{i} p_{i}^{2}$.

Central question: When can a non-negative polynomial be written as a sum of squares?

Theorem (Hilbert, 1888)

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

Theorem (Hilbert, 1888)

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),

Theorem (Hilbert, 1888)

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),
- p is quadratic,

Theorem (Hilbert, 1888)

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),
- p is quadratic,
- p is of degree 4 in 3 variables (ternary quartics).

Theorem (Hilbert, 1888)

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),
- p is quadratic,
- p is of degree 4 in 3 variables (ternary quartics).

In all other cases, there exist non-negative polynomials that are not sums of squares.

Theorem (Hilbert, 1888)

Let p be a non-negative homogeneous polynomial. Then p is a sum of squares precisely in the following cases:

- p is bivariate (univariate non-homogeneous case),
- p is quadratic,
- p is of degree 4 in 3 variables (ternary quartics).

In all other cases, there exist non-negative polynomials that are not sums of squares.

Though Hilbert did not provide an example, his proof can be used for the construction of such polynomials (Robinson, Reznick, etc.).

The Motzkin polynomial

Historically: first example of a non-negative polynomial that is not a sum of squares (Motzkin, around 1965).

$$
M(x, y, z):=x^{2} y^{4}+x^{4} y^{2}+z^{6}-3 x^{2} y^{2} z^{2}
$$

The Motzkin polynomial

Historically: first example of a non-negative polynomial that is not a sum of squares (Motzkin, around 1965).

$$
M(x, y, z):=x^{2} y^{4}+x^{4} y^{2}+z^{6}-3 x^{2} y^{2} z^{2}
$$

It can be shown that

- $M(x, y, z)$ is non-negative (arithmetic-geometric mean inequality):

$$
\frac{x^{2} y^{4}+x^{4} y^{2}+z^{6}}{3} \geq \sqrt[3]{\left(x^{2} y^{4}\right)\left(x^{4} y^{2}\right)\left(z^{6}\right)}
$$

The Motzkin polynomial

Historically: first example of a non-negative polynomial that is not a sum of squares (Motzkin, around 1965).

$$
M(x, y, z):=x^{2} y^{4}+x^{4} y^{2}+z^{6}-3 x^{2} y^{2} z^{2}
$$

It can be shown that

- $M(x, y, z)$ is non-negative (arithmetic-geometric mean inequality):

$$
\frac{x^{2} y^{4}+x^{4} y^{2}+z^{6}}{3} \geq \sqrt[3]{\left(x^{2} y^{4}\right)\left(x^{4} y^{2}\right)\left(z^{6}\right)}
$$

- $M(x, y, z)$ cannot be written as a sum of squares.

A related question: Hilbert's $17^{\text {th }}$ Problem

A related question: Hilbert's $17^{\text {th }}$ Problem

Is it true that we can write every non-negative polynomial f as a sum of squares of rational functions:

$$
f=\sum_{i}\left(\frac{g_{i}}{h_{i}}\right)^{2} ?
$$

A related question: Hilbert's $17^{\text {th }}$ Problem

Is it true that we can write every non-negative polynomial f as a sum of squares of rational functions:

$$
f=\sum_{i}\left(\frac{g_{i}}{h_{i}}\right)^{2} ?
$$

Equivalently:

Given a non-negative polynomial f, does there exist a sum of squares g such that $f \cdot g$ is a sum of squares:

$$
f \cdot g=\sum_{i} p_{i}^{2} ?
$$

A related question: Hilbert's $17^{\text {th }}$ Problem

Is it true that we can write every non-negative polynomial f as a sum of squares of rational functions:

$$
f=\sum_{i}\left(\frac{g_{i}}{h_{i}}\right)^{2} ?
$$

Equivalently:
Given a non-negative polynomial f, does there exist a sum of squares g such that $f \cdot g$ is a sum of squares:

$$
f \cdot g=\sum_{i} p_{i}^{2} ?
$$

Answer: YES! (Artin, 1927)

A related question: Hilbert's $17^{\text {th }}$ Problem

Is it true that we can write every non-negative polynomial f as a sum of squares of rational functions:

$$
f=\sum_{i}\left(\frac{g_{i}}{h_{i}}\right)^{2} ?
$$

Equivalently:
Given a non-negative polynomial f, does there exist a sum of squares g such that $f \cdot g$ is a sum of squares:

$$
f \cdot g=\sum_{i} p_{i}^{2} ?
$$

Answer: YES! (Artin, 1927)
BUT: Degree of the multiplier may be very large.

The Motzkin polynomial revisited

Recall:

$$
M(x, y, z):=x^{2} y^{4}+x^{4} y^{2}+z^{6}-3 x^{2} y^{2} z^{2}
$$

The Motzkin polynomial revisited

Recall:

$$
M(x, y, z):=x^{2} y^{4}+x^{4} y^{2}+z^{6}-3 x^{2} y^{2} z^{2}
$$

$-\left(x^{2}+y^{2}\right)^{2} \cdot M(x, y, z)$ can be written as a sum of squares.

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} \cdot M(x, y, z)= & \left(\left(x^{2}-y^{2}\right) z^{3}\right)^{2} \\
& +\left(x^{2} y\left(x^{2}+y^{2}-2 z^{2}\right)\right)^{2} \\
& +\left(x y^{2}\left(x^{2}+y^{2}-2 z^{2}\right)\right)^{2} \\
& +\left(x y z\left(x^{2}+y^{2}-2 z^{2}\right)\right)^{2}
\end{aligned}
$$

The Motzkin polynomial revisited

Recall:

$$
M(x, y, z):=x^{2} y^{4}+x^{4} y^{2}+z^{6}-3 x^{2} y^{2} z^{2}
$$

- $\left(x^{2}+y^{2}\right)^{2} \cdot M(x, y, z)$ can be written as a sum of squares.

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} \cdot M(x, y, z)= & \left(\left(x^{2}-y^{2}\right) z^{3}\right)^{2} \\
& +\left(x^{2} y\left(x^{2}+y^{2}-2 z^{2}\right)\right)^{2} \\
& +\left(x y^{2}\left(x^{2}+y^{2}-2 z^{2}\right)\right)^{2} \\
& +\left(x y z\left(x^{2}+y^{2}-2 z^{2}\right)\right)^{2}
\end{aligned}
$$

$\Rightarrow M(x, y, z)$ can be written a sum of squares of rational functions with denominator $x^{2}+y^{2}$.

A more general story

$X \subseteq \mathbb{R P}^{m}$

real projective variety

A more general story

$X \subseteq \mathbb{R P}^{m}$

$I(X) \subseteq \mathbb{R}\left[x_{0}, \ldots, x_{m}\right]$
real projective variety
real radical ideal of X

A more general story

$X \subseteq \mathbb{R P}^{m}$
$I(X) \subseteq \mathbb{R}\left[x_{0}, \ldots, x_{m}\right]$
$R=\mathbb{R}\left[x_{0}, \ldots, x_{m}\right] / I(X)$
real projective variety
real radical ideal of X
coordinate ring of X

A more general story

$X \subseteq \mathbb{R P}^{m}$
$I(X) \subseteq \mathbb{R}\left[x_{0}, \ldots, x_{m}\right]$
$R=\mathbb{R}\left[x_{0}, \ldots, x_{m}\right] / I(X)$
$P_{X} \subseteq R_{2}$
real projective variety
real radical ideal of X
coordinate ring of X
quadratic polynomials that are non-negative on X

A more general story

$X \subseteq \mathbb{R P}^{m}$
$I(X) \subseteq \mathbb{R}\left[x_{0}, \ldots, x_{m}\right]$
$R=\mathbb{R}\left[x_{0}, \ldots, x_{m}\right] / I(X)$
$P_{X} \subseteq R_{2}$
$\Sigma_{x} \subseteq R_{2}$
real projective variety
real radical ideal of X
coordinate ring of X
quadratic polynomials that are non-negative on X
quadratic polynomials that are sums of squares of linear forms in R

A more general story

$X \subseteq \mathbb{R P}^{m}$
real projective variety
$I(X) \subseteq \mathbb{R}\left[x_{0}, \ldots, x_{m}\right] \quad$ real radical ideal of X
$R=\mathbb{R}\left[x_{0}, \ldots, x_{m}\right] / I(X) \quad$ coordinate ring of X
$P_{X} \subseteq R_{2}$
quadratic polynomials that are non-negative on X
$\Sigma_{X} \subseteq R_{2}$
quadratic polynomials that are sums of squares of linear forms in R

Question: When is $P_{X}=\Sigma_{X}$?

When is $P_{X}=\Sigma_{x}$?

When is $P_{X}=\Sigma_{x}$?

A non-degenerate irreducible variety $X \subseteq \mathbb{C P}^{m}$ is called a variety of minimal degree if

$$
\operatorname{deg}(X)=\operatorname{codim}(X)+1
$$

When is $P_{X}=\Sigma_{X}$?

A non-degenerate irreducible variety $X \subseteq \mathbb{C P}^{m}$ is called a variety of minimal degree if

$$
\operatorname{deg}(X)=\operatorname{codim}(X)+1
$$

Theorem (Del Pezzo, 1886; Bertini, 1908)
X is a variety of minimal degree if and only if X is one of the following:

When is $P_{X}=\Sigma_{X}$?

A non-degenerate irreducible variety $X \subseteq \mathbb{C P}^{m}$ is called a variety of minimal degree if

$$
\operatorname{deg}(X)=\operatorname{codim}(X)+1
$$

Theorem (Del Pezzo, 1886; Bertini, 1908)
X is a variety of minimal degree if and only if X is one of the following:

- a quadratic hypersurface,

When is $P_{X}=\Sigma_{X}$?

A non-degenerate irreducible variety $X \subseteq \mathbb{C P}^{m}$ is called a variety of minimal degree if

$$
\operatorname{deg}(X)=\operatorname{codim}(X)+1
$$

Theorem (Del Pezzo, 1886; Bertini, 1908)
X is a variety of minimal degree if and only if X is one of the following:

- a quadratic hypersurface,
- the Veronese embedding of $\mathbb{C P}^{2}$ into $\mathbb{C P}^{5}$,

When is $P_{X}=\Sigma_{X}$?

A non-degenerate irreducible variety $X \subseteq \mathbb{C P}^{m}$ is called a variety of minimal degree if

$$
\operatorname{deg}(X)=\operatorname{codim}(X)+1
$$

Theorem (Del Pezzo, 1886; Bertini, 1908)
X is a variety of minimal degree if and only if X is one of the following:

- a quadratic hypersurface,
- the Veronese embedding of $\mathbb{C P}^{2}$ into $\mathbb{C P}^{5}$,
- a rational normal scroll,

When is $P_{X}=\Sigma_{X}$?

A non-degenerate irreducible variety $X \subseteq \mathbb{C P}^{m}$ is called a variety of minimal degree if

$$
\operatorname{deg}(X)=\operatorname{codim}(X)+1
$$

Theorem (Del Pezzo, 1886; Bertini, 1908)
X is a variety of minimal degree if and only if X is one of the following:

- a quadratic hypersurface,
- the Veronese embedding of $\mathbb{C P}^{2}$ into $\mathbb{C P}^{5}$,
- a rational normal scroll,
- a (multiple) cone over any of the above.

When is $P_{X}=\Sigma_{X}$?

A non-degenerate irreducible variety $X \subseteq \mathbb{C P}^{m}$ is called a variety of minimal degree if

$$
\operatorname{deg}(X)=\operatorname{codim}(X)+1
$$

Theorem (Blekherman, Smith, Velasco; 2013)
Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real irreducible projective variety.

Then $P_{X}=\Sigma_{X}$ if and only if $X(\mathbb{C})$ is a variety of minimal degree.

Why is this a generalization of Hilbert?

Why is this a generalization of Hilbert?

Hilbert considered homogeneneous polynomials of even degree.

Why is this a generalization of Hilbert?

Hilbert considered homogeneneous polynomials of even degree.
Blekherman, Smith and Velasco restricted to degree 2 polynomials.

Why is this a generalization of Hilbert?

Hilbert considered homogeneneous polynomials of even degree.
Blekherman, Smith and Velasco restricted to degree 2 polynomials.
Their classification also solves the problem for polynomials of arbitrary even degree:

Why is this a generalization of Hilbert?

Hilbert considered homogeneneous polynomials of even degree.
Blekherman, Smith and Velasco restricted to degree 2 polynomials.
Their classification also solves the problem for polynomials of arbitrary even degree:

Under the $d^{\text {th }}$ Veronese embedding:

$$
\left.\begin{array}{rl}
\nu_{d}: & \mathbb{R P}^{m}
\end{array} \rightarrow \quad \mathbb{R P}^{\binom{m+d}{d}-1}\right]
$$

polynomials of degree $2 d$ on X correspond to polynomials of degree 2 on $\nu_{d}(X)$.

Why is this a generalization of Hilbert?

Hilbert considered homogeneneous polynomials of even degree.
Blekherman, Smith and Velasco restricted to degree 2 polynomials.
Their classification also solves the problem for polynomials of arbitrary even degree:

Under the $d^{\text {th }}$ Veronese embedding:

$$
\left.\begin{array}{rl}
\nu_{d}: & \mathbb{R P}^{m}
\end{array} \rightarrow \quad \mathbb{R P}^{\binom{m+d}{d}-1}\right]
$$

polynomials of degree $2 d$ on X correspond to polynomials of degree 2 on $\nu_{d}(X)$.

Hence: $P_{X, 2 d}=P_{\nu_{d}(X)}$ and $\Sigma_{X, 2 d}=\Sigma_{\nu_{d}(X)}$.

Why do we care?

Why do we care?

- Testing non-negativity is NP-hard.

Why do we care?

- Testing non-negativity is NP-hard.
- Testing whether a polynomial is a sum of squares can be done in polynomial time.

Why do we care?

- Testing non-negativity is NP-hard.
- Testing whether a polynomial is a sum of squares can be done in polynomial time.
- Many problems in combinatorial optimization can be modelled as minimizing a quadratic function p on a semialgebraic set X.

Why do we care?

- Testing non-negativity is NP-hard.
- Testing whether a polynomial is a sum of squares can be done in polynomial time.
- Many problems in combinatorial optimization can be modelled as minimizing a quadratic function p on a semialgebraic set X.

If our aim is to determine the minimum

$$
p^{*}=\min _{x \in X} p(x)=\max _{p-\lambda \in P_{X}} \lambda
$$

we can instead compute the approximation

$$
p_{\mathrm{SOS}}=\max _{p-\lambda \in \Sigma_{X}} \lambda .
$$

Why do we care?

- Testing non-negativity is NP-hard.
- Testing whether a polynomial is a sum of squares can be done in polynomial time.
- Many problems in combinatorial optimization can be modelled as minimizing a quadratic function p on a semialgebraic set X.

If our aim is to determine the minimum

$$
p^{*}=\min _{x \in X} p(x)=\max _{p-\lambda \in P_{X}} \lambda
$$

we can instead compute the approximation

$$
p_{\mathrm{SOS}}=\max _{p-\lambda \in \Sigma_{X}} \lambda .
$$

The difference between P_{X} and Σ_{X} determines the quality of the approximation.

Today

- What geometric features of X control the dimensions of generic exposed faces of P_{X} and Σ_{X} ?

Today

- What geometric features of X control the dimensions of generic exposed faces of P_{X} and Σ_{X} ?
- Dimensional differences between exposed faces of P_{X} and Σ_{X}.

Today

- What geometric features of X control the dimensions of generic exposed faces of P_{X} and Σ_{X} ?
- Dimensional differences between exposed faces of P_{X} and Σ_{X}.
- Combinatorics and geometry of gap vectors.

Today

- What geometric features of X control the dimensions of generic exposed faces of P_{X} and Σ_{X} ?
- Dimensional differences between exposed faces of P_{X} and Σ_{X}.
- Combinatorics and geometry of gap vectors.
- Gap vectors of Veronese varieties.

Outline

1 Introduction: The classical setting

2 Dimensions of the faces of P_{X} and Σ_{X}

3 Dimensional differences and gap vectors

Setting

$X \subseteq \mathbb{R P}^{m}$
$I(X) \subseteq \mathbb{R}\left[x_{0}, \ldots, x_{m}\right]$
$R=\mathbb{R}\left[x_{0}, \ldots, x_{m}\right] / I(X)$
$P_{X} \subseteq R_{2}$
$\Sigma_{X} \subseteq R_{2}$
non-degenerate, real projective variety
real radical ideal of X
coordinate ring of X
quadratic polynomials that are non-negative on X
quadratic polynomials that are sums of squares of linear forms in R

Exposed faces

$X \subseteq \mathbb{R P}^{m}$

> non-degenerate, real projective variety

Exposed faces

$X \subseteq \mathbb{R P}^{m}$

For $\Gamma \subseteq X$ let:
non-degenerate, real projective variety
$P(\Gamma)$ be the set of forms in P_{X} that vanish on Γ.
$\Sigma(\Gamma)$ be the set of forms in Σ_{X} that vanish on Γ.

Exposed faces

$X \subseteq \mathbb{R P}^{m}$
For $\Gamma \subseteq X$ let:
non-degenerate, real projective variety
$P(\Gamma)$ be the set of forms in P_{X} that vanish on Γ.
$\Sigma(\Gamma)$ be the set of forms in Σ_{x} that vanish on Γ.

Note:

- P_{X} and Σ_{X} are full-dimensional, convex, pointed cones in R_{2}.

Exposed faces

$X \subseteq \mathbb{R P}^{m}$
For $\Gamma \subseteq X$ let:
non-degenerate, real projective variety
$P(\Gamma)$ be the set of forms in P_{X} that vanish on Γ.
$\Sigma(\Gamma)$ be the set of forms in Σ_{X} that vanish on Γ.

Note:

- P_{X} and Σ_{X} are full-dimensional, convex, pointed cones in R_{2}.

■ $P(\Gamma)$ and $\Sigma(\Gamma)$ are exposed faces of P_{X} and Σ_{X}.

Exposed faces

$X \subseteq \mathbb{R P}^{m}$
For $\Gamma \subseteq X$ let:
non-degenerate, real projective variety
$P(\Gamma)$ be the set of forms in P_{X} that vanish on Γ.
$\Sigma(\Gamma)$ be the set of forms in Σ_{X} that vanish on Γ.

Note:

- P_{X} and Σ_{X} are full-dimensional, convex, pointed cones in R_{2}.
- $P(\Gamma)$ and $\Sigma(\Gamma)$ are exposed faces of P_{X} and Σ_{X}.

In this talk: We want to determine the dimensions of generic exposed faces $P(\Gamma)$ and $\Sigma(\Gamma)$.

Dimension of $\Sigma(\Gamma)$

Dimension of $\Sigma(\Gamma)$

Theorem (Blekherman, lliman, J., Velasco)
Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Dimension of $\Sigma(\Gamma)$

Theorem (Blekherman, lliman, J., Velasco)

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Let Y be the projection of X away from the projective subspace $\langle\Gamma\rangle$ that is spanned by Γ

Dimension of $\Sigma(\Gamma)$

Theorem (Blekherman, lliman, J., Velasco)

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Let Y be the projection of X away from the projective subspace $\langle\Gamma\rangle$ that is spanned by Γ and let S be the homogeneous coordinate ring of Y.

Dimension of $\Sigma(\Gamma)$

Theorem (Blekherman, lliman, J., Velasco)

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a finite set of points.

Let Y be the projection of X away from the projective subspace $\langle\Gamma\rangle$ that is spanned by Γ and let S be the homogeneous coordinate ring of Y.

Then

$$
\operatorname{dim} \Sigma(\Gamma)=\operatorname{dim} S_{2} .
$$

Dimension of $\Sigma(\Gamma)$

Theorem (Blekherman, lliman, J., Velasco)

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let
$\Gamma \subseteq X$ be a finite set of points.
Let Y be the projection of X away from the projective subspace
$\langle\Gamma\rangle$ that is spanned by Γ and let S be the homogeneous coordinate ring of Y.

Then

$$
\operatorname{dim} \Sigma(\Gamma)=\operatorname{dim} S_{2}
$$

Regarding non-negative polynomials, we cannot determine the dimension of $P(\Gamma)$ for any set of points $\Gamma \subseteq X$.

We need an extra condition: independence.

Independent sets

Independent sets

$\Gamma \subseteq X$ finite set of non-singular points
$\langle\Gamma\rangle$ projective subspace of $\mathbb{R P}^{m}$ spanned by Γ

Independent sets

$\Gamma \subseteq X$ finite set of non-singular points
$\langle\Gamma\rangle$ projective subspace of \mathbb{R}^{m} spanned by Γ
Γ is independent if

Independent sets

$\Gamma \subseteq X$ finite set of non-singular points
$\langle\Gamma\rangle$ projective subspace of $\mathbb{R P}^{m}$ spanned by Γ
Γ is independent if
(1) the equality $\langle\Gamma\rangle \cap X=\Gamma$ holds,

Independent sets

$\Gamma \subseteq X$ finite set of non-singular points
$\langle\Gamma\rangle$ projective subspace of $\mathbb{R P}^{m}$ spanned by Γ
Γ is independent if
(1) the equality $\langle\Gamma\rangle \cap X=\Gamma$ holds,
(2) the projective subspace $\langle\Gamma\rangle$ has dimension $|\Gamma|-1$, and,

Independent sets

$\Gamma \subseteq X$ finite set of non-singular points
$\langle\Gamma\rangle$ projective subspace of $\mathbb{R P}^{m}$ spanned by Γ
Γ is independent if
(1) the equality $\langle\Gamma\rangle \cap X=\Gamma$ holds,
(2) the projective subspace $\langle\Gamma\rangle$ has dimension $|\Gamma|-1$, and,
(3) for every point $p \in \Gamma$, the equality $T_{p}(X) \cap\langle\Gamma\rangle=\{p\}$ holds, where $T_{p}(X)$ is the tangent space of X at p.

Independent sets

$\Gamma \subseteq X$ finite set of non-singular points
$\langle\Gamma\rangle$ projective subspace of $\mathbb{R P}^{m}$ spanned by Γ
Γ is independent if
(1) the equality $\langle\Gamma\rangle \cap X=\Gamma$ holds,
(2) the projective subspace $\langle\Gamma\rangle$ has dimension $|\Gamma|-1$, and,
(3) for every point $p \in \Gamma$, the equality $T_{p}(X) \cap\langle\Gamma\rangle=\{p\}$ holds, where $T_{p}(X)$ is the tangent space of X at p.

Geometrically:

- (2) means that the points in 「 are projectively independent.

Independent sets

$\Gamma \subseteq X$ finite set of non-singular points
$\langle\Gamma\rangle$ projective subspace of $\mathbb{R P}^{m}$ spanned by Γ
Γ is independent if
(1) the equality $\langle\Gamma\rangle \cap X=\Gamma$ holds,
(2) the projective subspace $\langle\Gamma\rangle$ has dimension $|\Gamma|-1$, and,
(3) for every point $p \in \Gamma$, the equality $T_{p}(X) \cap\langle\Gamma\rangle=\{p\}$ holds, where $T_{p}(X)$ is the tangent space of X at p.

Geometrically:

- (2) means that the points in 「 are projectively independent.
- (1) and (3) say that $\langle\Gamma\rangle$ and X intersect transversely and the intersection is Γ.

Independent sets: Why do we care?

$X \subseteq \mathbb{R} \mathbb{P}^{m}$ non-degenerate variety of codimension c. Then:

Independent sets: Why do we care?

$X \subseteq \mathbb{R} \mathbb{P}^{m}$ non-degenerate variety of codimension c. Then:
(1) The set of independent c-tuples of points of X is a non-empty open dense subset of X^{c}.

Independent sets: Why do we care?

$X \subseteq \mathbb{R P}^{m}$ non-degenerate variety of codimension c. Then:
(1) The set of independent c-tuples of points of X is a non-empty open dense subset of X^{c}.
(2) If $X(\mathbb{C})$ is of minimal degree, then the set of independent ($c+1$)-tuples of points of X is a non-empty open dense subset of X^{c+1}.

Independent sets: Why do we care?

$X \subseteq \mathbb{R P}^{m}$ non-degenerate variety of codimension c. Then:
(1) The set of independent c-tuples of points of X is a non-empty open dense subset of X^{c}.
(2) If $X(\mathbb{C})$ is of minimal degree, then the set of independent ($c+1$)-tuples of points of X is a non-empty open dense subset of X^{c+1}.
(3) The maximum cardinality of an independent set of points of X is c, unless $X(\mathbb{C})$ is a variety of minimal degree, in which case it is $c+1$.

Independent sets: Why do we care?

$X \subseteq \mathbb{R P}^{m}$ non-degenerate variety of codimension c. Then:
(1) The set of independent c-tuples of points of X is a non-empty open dense subset of X^{c}.
(2) If $X(\mathbb{C})$ is of minimal degree, then the set of independent ($c+1$)-tuples of points of X is a non-empty open dense subset of X^{c+1}.
(3) The maximum cardinality of an independent set of points of X is c, unless $X(\mathbb{C})$ is a variety of minimal degree, in which case it is $c+1$.

Bottom line: A generic set of points of size $\leq c$ is independent.

Dimension of $P(\Gamma)$

Dimension of $P(\Gamma)$

Theorem (Blekherman, lliman, J., Velasco)
Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points.

Dimension of $P(\Gamma)$

Theorem (Blekherman, lliman, J., Velasco)
Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points.
Then

$$
\operatorname{dim} P(\Gamma)=\operatorname{dim} R_{2}-|\Gamma|(\operatorname{dim} X+1)
$$

Dimension of $P(\Gamma)$

Theorem (Blekherman, lliman, J., Velasco)
Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points.

Then

$$
\operatorname{dim} P(\Gamma)=\operatorname{dim} R_{2}-|\Gamma|(\operatorname{dim} X+1)
$$

- We first show that $P(\Gamma)$ is full-dimensional in the vector space of quadratic forms vanishing to order ≥ 2 at all points of Γ.

Outline

1 Introduction: The classical setting

2 Dimensions of the faces of P_{X} and Σ_{X}

3 Dimensional differences and gap vectors

The gap vector

$X \subseteq \mathbb{R P}^{m}$ non-degenerate, real projective variety

The gap vector

$X \subseteq \mathbb{R P}^{m}$ non-degenerate, real projective variety

For $1 \leq \ell \leq \operatorname{codim}(X)=c$, we set

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma),
$$

where $\Gamma \subseteq X$ is a generic set of points with $|\Gamma|=\ell$.

The gap vector

$X \subseteq \mathbb{R P}^{m}$ non-degenerate, real projective variety

For $1 \leq \ell \leq \operatorname{codim}(X)=c$, we set

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma),
$$

where $\Gamma \subseteq X$ is a generic set of points with $|\Gamma|=\ell$.
$g(X)=\left(g_{1}(X), g_{2}(X), \ldots, g_{c}(X)\right)$ is called gap vector of X.

The gap vector

$X \subseteq \mathbb{R P}^{m}$ non-degenerate, real projective variety

For $1 \leq \ell \leq \operatorname{codim}(X)=c$, we set

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma),
$$

where $\Gamma \subseteq X$ is a generic set of points with $|\Gamma|=\ell$.
$g(X)=\left(g_{1}(X), g_{2}(X), \ldots, g_{c}(X)\right)$ is called gap vector of X.

The gap vector measures dimensional differences between generic exposed faces of P_{X} and Σ_{X}.

Quadratic deficiency

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate variety of codimension c.

Quadratic deficiency

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate variety of codimension c. The number

$$
\epsilon(X):=\binom{c+1}{2}-\operatorname{dim} I(X)_{2}
$$

is called quadratic deficiency of X.

Quadratic deficiency

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate variety of codimension c. The number

$$
\epsilon(X):=\binom{c+1}{2}-\operatorname{dim} I(X)_{2}
$$

is called quadratic deficiency of X.

Theorem (Blekherman, lliman, J., Velasco)

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let $\Gamma \subseteq X$ be a generic set of points of cardinality $\ell \leq \operatorname{codim}(X)$.

Let Y be the projection of X away from $\langle\Gamma\rangle$.

Quadratic deficiency

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate variety of codimension c. The number

$$
\epsilon(X):=\binom{c+1}{2}-\operatorname{dim} I(X)_{2}
$$

is called quadratic deficiency of X.

Theorem (Blekherman, lliman, J., Velasco)

Let $X \subseteq \mathbb{R P}^{m}$ be a non-degenerate, real projective variety and let
$\Gamma \subseteq X$ be a generic set of points of cardinality $\ell \leq \operatorname{codim}(X)$.
Let Y be the projection of X away from $\langle\Gamma\rangle$.
Then

$$
g_{\ell}(X)=\epsilon(X)-\epsilon(Y)
$$

Combinatorics of gap vectors

Combinatorics of gap vectors

Recall:

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma), \quad \text { for } 1 \leq \ell \leq \operatorname{codim}(X)=c
$$

The gap vector has the following properties:

Combinatorics of gap vectors

Recall:

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma), \quad \text { for } 1 \leq \ell \leq \operatorname{codim}(X)=c
$$

The gap vector has the following properties:
(1) $g_{c}(X)=\epsilon(X)=\binom{c+1}{2}-\operatorname{dim} I(X)_{2}$

Combinatorics of gap vectors

Recall:

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma), \quad \text { for } 1 \leq \ell \leq \operatorname{codim}(X)=c
$$

The gap vector has the following properties:
(1) $g_{c}(X)=\epsilon(X)=\binom{c+1}{2}-\operatorname{dim} I(X)_{2}$
(2) $g_{c-1}(X)= \begin{cases}0, & \text { if } X \text { is a variety of minimal degree. } \\ \epsilon(X)-1, & \text { otherwise. }\end{cases}$

Combinatorics of gap vectors (cont'd)

Recall:

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma), \quad \text { for } 1 \leq \ell \leq \operatorname{codim}(X)=c
$$

The gap vector has the following properties:
(3) $0 \leq g_{1}(X) \leq g_{2}(X) \leq \cdots \leq g_{c}(X)$

Combinatorics of gap vectors (cont'd)

Recall:

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma), \quad \text { for } 1 \leq \ell \leq \operatorname{codim}(X)=c
$$

The gap vector has the following properties:
(3) $0 \leq g_{1}(X) \leq g_{2}(X) \leq \cdots \leq g_{c}(X)$
(4) $g_{j+1}(X)-g_{j}(X) \leq c-j$ for $1 \leq j \leq c-1$ (bounded growth). Moreover, we can classify the situation, when extremal growth occurs.

Combinatorics of gap vectors (cont'd)

Recall:

$$
g_{\ell}(X)=\operatorname{dim} P(\Gamma)-\operatorname{dim} \Sigma(\Gamma), \quad \text { for } 1 \leq \ell \leq \operatorname{codim}(X)=c
$$

The gap vector has the following properties:
(3) $0 \leq g_{1}(X) \leq g_{2}(X) \leq \cdots \leq g_{c}(X)$
(4) $g_{j+1}(X)-g_{j}(X) \leq c-j$ for $1 \leq j \leq c-1$ (bounded growth). Moreover, we can classify the situation, when extremal growth occurs.
(5) If $g_{s+1}(X)-g_{s}(X)=c-s$ for some $s<c$, then $g_{j+1}(X)-g_{j}(X)=c-j$ for all $s \leq j \leq c-1$.

How simple can a gap vector be?

How simple can a gap vector be?

Theorem (Blekherman, lliman, J., Velasco)
(1) $g(X)=0$ (componentwise) if and only if X is a variety of minimal degree.

How simple can a gap vector be?

Theorem (Blekherman, lliman, J., Velasco)

(1) $g(X)=0$ (componentwise) if and only if X is a variety of minimal degree.
(2) $g(X)$ has only one non-zero component if and only if $\epsilon(X)=1$. In this case $g(X)=(0, \ldots, 0,1)$.

How simple can a gap vector be?

Theorem (Blekherman, lliman, J., Velasco)

(1) $g(X)=0$ (componentwise) if and only if X is a variety of minimal degree.
(2) $g(X)$ has only one non-zero component if and only if $\epsilon(X)=1$. In this case $g(X)=(0, \ldots, 0,1)$.

Note:

- (1) rediscovers the result by Blekherman, Smith and Velasco showing that $P_{X} \neq \Sigma_{X}$ if X is not of minimal degree.

How simple can a gap vector be?

Theorem (Blekherman, lliman, J., Velasco)

(1) $g(X)=0$ (componentwise) if and only if X is a variety of minimal degree.
(2) $g(X)$ has only one non-zero component if and only if $\epsilon(X)=1$. In this case $g(X)=(0, \ldots, 0,1)$.

Note:

- (1) rediscovers the result by Blekherman, Smith and Velasco showing that $P_{X} \neq \Sigma_{X}$ if X is not of minimal degree.
- Not only the varieties of minimal degree (DelPezzo, Bertini) but also those with $\epsilon(X)=1$ (Zak) are completely classified.

Veronese embeddings

- $X=\nu_{4}\left(\mathbb{R P}^{2}\right) \subseteq \mathbb{R}^{14} 4^{\text {th }}$ Veronese embedding of $\mathbb{R} \mathbb{P}^{2}$

$$
\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{0}^{4}: x_{0}^{3} x_{1}: x_{0}^{3} x_{2}: \ldots: x_{2}^{4}\right]
$$

Veronese embeddings

- $X=\nu_{4}\left(\mathbb{R P}^{2}\right) \subseteq \mathbb{R P}^{14} 4^{\text {th }}$ Veronese embedding of $\mathbb{R} \mathbb{P}^{2}$

$$
\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{0}^{4}: x_{0}^{3} x_{1}: x_{0}^{3} x_{2}: \ldots: x_{2}^{4}\right]
$$

Then $\operatorname{codim}(X)=12$ and

$$
g(X)=(\underbrace{0, \ldots, 0}_{10}, 2,3) .
$$

Veronese embeddings

- $X=\nu_{4}\left(\mathbb{R P}^{2}\right) \subseteq \mathbb{R}^{14} 4^{\text {th }}$ Veronese embedding of $\mathbb{R} \mathbb{P}^{2}$

$$
\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{0}^{4}: x_{0}^{3} x_{1}: x_{0}^{3} x_{2}: \ldots: x_{2}^{4}\right]
$$

Then $\operatorname{codim}(X)=12$ and

$$
g(X)=(\underbrace{0, \ldots, 0}_{10}, 2,3) .
$$

- $X=\nu_{4}\left(\mathbb{R} \mathbb{P}^{3}\right) \subseteq \mathbb{R} \mathbb{P}^{34} 4^{\text {th }}$ Veronese embedding of $\mathbb{R} \mathbb{P}^{3}$.

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \mapsto\left[x_{0}^{4}: x_{0}^{3} x_{1}: x_{0}^{3} x_{2}: \ldots: x_{3}^{4}\right]
$$

Veronese embeddings

- $X=\nu_{4}\left(\mathbb{R P}^{2}\right) \subseteq \mathbb{R P}^{14} 4^{\text {th }}$ Veronese embedding of $\mathbb{R} \mathbb{P}^{2}$

$$
\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{0}^{4}: x_{0}^{3} x_{1}: x_{0}^{3} x_{2}: \ldots: x_{2}^{4}\right]
$$

Then $\operatorname{codim}(X)=12$ and

$$
g(X)=(\underbrace{0, \ldots, 0}_{10}, 2,3) .
$$

■ $X=\nu_{4}\left(\mathbb{R} \mathbb{P}^{3}\right) \subseteq \mathbb{R} \mathbb{P}^{34} 4^{\text {th }}$ Veronese embedding of $\mathbb{R} \mathbb{P}^{3}$.

$$
\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \mapsto\left[x_{0}^{4}: x_{0}^{3} x_{1}: x_{0}^{3} x_{2}: \ldots: x_{3}^{4}\right]
$$

Then $\operatorname{codim}(X)=31$ and

$$
g(X)=(\underbrace{0, \ldots, 0}_{23}, 3,10,16,21,25,28,30,31) .
$$

$d^{\text {th }}$ Veronese embeddings of $\mathbb{R} \mathbb{P}^{2}$

Theorem (Blekherman, lliman, J., Velasco)

Let $X=\nu_{d}\left(\mathbb{R P}^{2}\right) \subseteq \mathbb{R P}^{\binom{d+2}{2}^{-1}}$ be the $d^{\text {th }}$ Veronese embedding of $\mathbb{R P}^{2}$. Then

$$
g_{j}(X)= \begin{cases}0, & \text { if } j \leq\binom{ d+1}{2} \\ \left(j-\binom{d+2}{2}\right)(d-1)-\binom{j+1-\binom{d+1}{2}}{2}, & \text { otherwise. }\end{cases}
$$

Theorem (Blekherman, lliman, J., Velasco)

Let $X=\nu_{d}\left(\mathbb{R P}^{2}\right) \subseteq \mathbb{R P}^{\binom{d+2}{2}^{-1}}$ be the $d^{\text {th }}$ Veronese embedding of $\mathbb{R P}^{2}$. Then

$$
g_{j}(X)= \begin{cases}0, & \text { if } j \leq\binom{ d+1}{2} \\ \left(j-\binom{d+2}{2}\right)(d-1)-\binom{j+1-\binom{d+1}{2}}{2}, & \text { otherwise. }\end{cases}
$$

Note:
The growth in each step is extremal.

Theorem (Blekherman, lliman, J., Velasco)

Let $X=\nu_{d}\left(\mathbb{R P}^{2}\right) \subseteq \mathbb{R P}^{\binom{d+2}{2}^{-1}}$ be the $d^{\text {th }}$ Veronese embedding of $\mathbb{R P}^{2}$. Then

$$
g_{j}(X)= \begin{cases}0, & \text { if } j \leq\binom{ d+1}{2} \\ \left(j-\binom{d+2}{2}\right)(d-1)-\binom{j+1-\binom{d+1}{2}}{2}, & \text { otherwise. }\end{cases}
$$

Note:
The growth in each step is extremal.
Question:
What about gap vectors of general Veronese embeddings of $\mathbb{R P}^{m}$?

Conjecture (Blekherman, Iliman, J., Velasco)
Let $X=\nu_{d}\left(\mathbb{R P}^{m}\right)$. Let

$$
j^{*}=\left\lceil\binom{ n+d}{d}-(n+1)+\frac{1}{2}-\sqrt{\left(n+\frac{1}{2}\right)^{2}+2\binom{n+2 d}{2 d}-2(n+1)\binom{n+d}{d}}\right\rceil .
$$

Then

(1) $g_{j}(X)=0$ for $1 \leq j<j^{*}$,
(2) $g_{j}(X)=\binom{m+2 d}{2 d}-j(m+1)-\binom{\binom{m+d}{d}-j+1}{2}$, for
$j^{*} \leq j \leq \operatorname{codim}(X)$.

Thank you for your attention!

