# On the toric ideal of a matroid and related combinatorial problems 

Michał Lasoń<br>Institute of Mathematics of the Polish Academy of Sciences

$$
\text { Osnabrück, 7th October } 2015
$$

## what is a matroid?

## what is a matroid?

A structure that abstracts the idea of independence.

## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

- independent sets


## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

- independent sets
- bases


## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

- independent sets
- bases - axiom:


## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

- independent sets
- bases - axiom:
- exchange property: for $B, B^{\prime}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime}$ is a basis


## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

- independent sets
- bases - axiom:
- exchange property: for $B, B^{\prime}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime}$ is a basis
as a consequence it satisfies also:
- symmetric exchange property


## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

- independent sets
- bases - axiom:
- exchange property: for $B, B^{\prime}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime}$ is a basis
as a consequence it satisfies also:
- symmetric exchange property
- multiple symmetric exchange property


## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

- independent sets
- bases - axiom:
- exchange property: for $B, B^{\prime}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime}$ is a basis
as a consequence it satisfies also:
- symmetric exchange property
- multiple symmetric exchange property
- rank function


## what is a matroid?

A structure that abstracts the idea of independence. Matroid $M$ on a ground set $E$ can be introduced in several ways:

- independent sets
- bases - axiom:
- exchange property: for $B, B^{\prime}$ and $b^{\prime} \in B^{\prime} \backslash B$ there is $b \in B \backslash B^{\prime}$ such that $(B \backslash b) \cup b^{\prime}$ is a basis
as a consequence it satisfies also:
- symmetric exchange property
- multiple symmetric exchange property
- rank function
- ... and by many other ways (circuits, flats, hyperplanes)


## examples

- representable matroid: $E$ - a finite subset of a vector space


## examples

- representable matroid: $E$ - a finite subset of a vector space independent sets - linearly independent subsets of $E$


## examples

- representable matroid: $E$ - a finite subset of a vector space independent sets - linearly independent subsets of $E$ bases - bases of $E$ in the vector space


## examples

- representable matroid: $E$ - a finite subset of a vector space independent sets - linearly independent subsets of $E$ bases - bases of $E$ in the vector space
- graphic matroid: $E$ - the set of edges in a given graph $G$


## examples

- representable matroid: $E$ - a finite subset of a vector space independent sets - linearly independent subsets of $E$ bases - bases of $E$ in the vector space
- graphic matroid: $E$ - the set of edges in a given graph $G$ independent sets - subsets of $E$ that do not contain a cycle


## examples

- representable matroid: $E$ - a finite subset of a vector space independent sets - linearly independent subsets of $E$ bases - bases of $E$ in the vector space
- graphic matroid: $E$ - the set of edges in a given graph $G$ independent sets - subsets of $E$ that do not contain a cycle bases - spanning trees of $G$


## toric ideal of a matroid

## toric ideal of a matroid

$M$ a matroid on a ground set $E$ with the set of bases $\mathcal{B}, \mathbb{K}$ a field

## toric ideal of a matroid

$M$ a matroid on a ground set $E$ with the set of bases $\mathcal{B}, \mathbb{K}$ a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

## toric ideal of a matroid

$M$ a matroid on a ground set $E$ with the set of bases $\mathcal{B}, \mathbb{K}$ a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural $\mathbb{K}$-homomorphism:

## toric ideal of a matroid

$M$ a matroid on a ground set $E$ with the set of bases $\mathcal{B}, \mathbb{K}$ a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural $\mathbb{K}$-homomorphism:

$$
\varphi_{M}: S_{M} \ni y_{B} \rightarrow \prod_{e \in B} x_{e} \in \mathbb{K}\left[x_{e}: e \in E\right]
$$

## toric ideal of a matroid

$M$ a matroid on a ground set $E$ with the set of bases $\mathcal{B}, \mathbb{K}$ a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural $\mathbb{K}$-homomorphism:

$$
\varphi_{M}: S_{M} \ni y_{B} \rightarrow \prod_{e \in B} x_{e} \in \mathbb{K}\left[x_{e}: e \in E\right]
$$

Toric ideal of $M$, is the kernel $I_{M}:=\operatorname{ker} \varphi_{M}$.

## toric ideal of a matroid

$M$ a matroid on a ground set $E$ with the set of bases $\mathcal{B}, \mathbb{K}$ a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural $\mathbb{K}$-homomorphism:

$$
\varphi_{M}: S_{M} \ni y_{B} \rightarrow \prod_{e \in B} x_{e} \in \mathbb{K}\left[x_{e}: e \in E\right]
$$

Toric ideal of $M$, is the kernel $I_{M}:=\operatorname{ker} \varphi_{M}$.
By the symmetric exchange property from bases $B, B^{\prime}$ we get bases

$$
D=(B \backslash e) \cup f \text { and } D^{\prime}=\left(B^{\prime} \backslash f\right) \cup e
$$

for some $e \in B$ and $f \in B^{\prime}$.

## toric ideal of a matroid

$M$ a matroid on a ground set $E$ with the set of bases $\mathcal{B}, \mathbb{K}$ a field

$$
S_{M}:=\mathbb{K}\left[y_{B}: B \in \mathcal{B}\right]
$$

There is a natural $\mathbb{K}$-homomorphism:

$$
\varphi_{M}: S_{M} \ni y_{B} \rightarrow \prod_{e \in B} x_{e} \in \mathbb{K}\left[x_{e}: e \in E\right]
$$

Toric ideal of $M$, is the kernel $I_{M}:=\operatorname{ker} \varphi_{M}$.
By the symmetric exchange property from bases $B, B^{\prime}$ we get bases

$$
D=(B \backslash e) \cup f \text { and } D^{\prime}=\left(B^{\prime} \backslash f\right) \cup e
$$

for some $e \in B$ and $f \in B^{\prime}$. Then clearly $y_{B} y_{B^{\prime}}-y_{D} y_{D^{\prime}} \in I_{M}$.

## White's conjectures

## Conjecture (White '80)

For every matroid $M$ :

## White's conjectures

## Conjecture (White '80)

For every matroid $M$ :

- WEAK: $I_{M}$ is generated by quadratic binomials


## White's conjectures

## Conjecture (White '80)

For every matroid $M$ :

- WEAK: $I_{M}$ is generated by quadratic binomials
- CLASSIC: $I_{M}$ is generated by quadratic binomials corresponding to symmetric exchanges


## White's conjectures

## Conjecture (White '80)

For every matroid $M$ :

- WEAK: $I_{M}$ is generated by quadratic binomials
- CLASSIC: $I_{M}$ is generated by quadratic binomials corresponding to symmetric exchanges
- STRONG: $I_{M}$ in noncommutative ring $S_{M}$ is generated by quadratic binomials corresponding to symmetric exchanges


## what is known?

## what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids


## what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids


## what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids


## what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$


## what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$
- '11 Schweig: CLASSIC for lattice path matroids (lattice path matroids is a subclass of transversal matroids)


## what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$
- '11 Schweig: CLASSIC for lattice path matroids
(lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids


## what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$
- '11 Schweig: CLASSIC for lattice path matroids (lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids
- '14 L., Michałek: STRONG for strongly base orderable matroids (contain transversal matroids)


## what is known?

- '02 Herzog, Hibi: equivalent for discrete polymatroids
- '07 Conca: WEAK for transversal polymatroids
- '08 Blasiak: CLASSIC for graphic matroids
- '10 Kashiwabara: CLASSIC for matroids of rank $\leqslant 3$
- '11 Schweig: CLASSIC for lattice path matroids (lattice path matroids is a subclass of transversal matroids)
- '13 Bonin: STRONG for sparse paving matroids
- '14 L., Michałek: STRONG for strongly base orderable matroids (contain transversal matroids) and CLASSIC up to saturation for arbitrary matroids


## cyclic ordering conjecture

## Conjecture (Kajitani, Ueno, Miyano '88)

Let $M=(E, r)$ be a matroid. The following conditions are equivalent:

- for each $\emptyset \neq A \subset E$ the inequality $\frac{|A|}{r(A)} \leqslant \frac{|E|}{r(E)}$ holds
- there exists a cyclic ordering - it is possible to place elements of $E$ on a circle in such a way that any $r(E)$ cyclically consecutive elements form a basis


## cyclic ordering conjecture

## Conjecture (Kajitani, Ueno, Miyano '88)

Let $M=(E, r)$ be a matroid. The following conditions are equivalent:

- for each $\emptyset \neq A \subset E$ the inequality $\frac{|A|}{r(A)} \leqslant \frac{|E|}{r(E)}$ holds
- there exists a cyclic ordering - it is possible to place elements of $E$ on a circle in such a way that any $r(E)$ cyclically consecutive elements form a basis

Theorem (van den Heuvel, Thomassé '12)
If $|E|$ and $r(E)$ are coprime, then cyclic ordering conjecture holds for $M=(E, r)$.

## base graph of a 2-matroid

2-matroid - a matroid in which $E$ is union of two disjoint bases.

## base graph of a 2-matroid

2-matroid - a matroid in which $E$ is union of two disjoint bases. Graph $\mathfrak{B}_{2}(M)$ with

- vertices - pairs of bases $\left(B_{1}, B_{2}\right)$ which sum to $E$,
- edges - between pairs of bases obtained by a symmetric exchange property.


## base graph of a 2-matroid

2-matroid - a matroid in which $E$ is union of two disjoint bases.
Graph $\mathfrak{B}_{2}(M)$ with

- vertices - pairs of bases $\left(B_{1}, B_{2}\right)$ which sum to $E$,
- edges - between pairs of bases obtained by a symmetric exchange property.


## Conjecture (cyclic ordering conjecture for a 2-matroid)

There exist complementary bases $B_{1}, B_{2}$ in $M$, such that vertices $\left(B_{1}, B_{2}\right)$ and $\left(B_{2}, B_{1}\right)$ in the graph $\mathfrak{B}_{2}(M)$ are connected by a path of length at most $r(E)$.

## base graph of a 2-matroid

2-matroid - a matroid in which $E$ is union of two disjoint bases.
Graph $\mathfrak{B}_{2}(M)$ with

- vertices - pairs of bases $\left(B_{1}, B_{2}\right)$ which sum to $E$,
- edges - between pairs of bases obtained by a symmetric exchange property.


## Conjecture (cyclic ordering conjecture for a 2-matroid)

There exist complementary bases $B_{1}, B_{2}$ in $M$, such that vertices $\left(B_{1}, B_{2}\right)$ and $\left(B_{2}, B_{1}\right)$ in the graph $\mathfrak{B}_{2}(M)$ are connected by a path of length at most $r(E)$.

## Conjecture (Farber, Richter, Shank '85)

For every 2-matroid $M$ the graph $\mathfrak{B}_{2}(M)$ is connected.

## base graph of a $k$-matroid

$k$-matroid (for $k \geqslant 3$ ) is a matroid in which $E$ is union of $k$ disjoint bases.

## base graph of a k-matroid

$k$-matroid (for $k \geqslant 3$ ) is a matroid in which $E$ is union of $k$ disjoint bases.
Graph $\mathfrak{B}_{k}(M)$ with

- vertices - sets of $k$ bases $\left\{B_{1}, \ldots, B_{k}\right\}$ which sum to $E$,


## base graph of a $k$-matroid

$k$-matroid (for $k \geqslant 3$ ) is a matroid in which $E$ is union of $k$ disjoint bases.
Graph $\mathfrak{B}_{k}(M)$ with

- vertices - sets of $k$ bases $\left\{B_{1}, \ldots, B_{k}\right\}$ which sum to $E$,
- edges - between sets with nonempty intersection.


## base graph of a $k$-matroid

$k$-matroid (for $k \geqslant 3$ ) is a matroid in which $E$ is union of $k$ disjoint bases.
Graph $\mathfrak{B}_{k}(M)$ with

- vertices - sets of $k$ bases $\left\{B_{1}, \ldots, B_{k}\right\}$ which sum to $E$,
- edges - between sets with nonempty intersection.

Proposition (Blasiak '08)

- WEAK $\Longleftrightarrow$ for $k \geqslant 3$ graph $\mathfrak{B}_{k}$ is connected


## base graph of a $k$-matroid

$k$-matroid (for $k \geqslant 3$ ) is a matroid in which $E$ is union of $k$ disjoint bases.
Graph $\mathfrak{B}_{k}(M)$ with

- vertices - sets of $k$ bases $\left\{B_{1}, \ldots, B_{k}\right\}$ which sum to $E$,
- edges - between sets with nonempty intersection.

Proposition (Blasiak '08)

- WEAK $\Longleftrightarrow$ for $k \geqslant 3$ graph $\mathfrak{B}_{k}$ is connected
- STRONG $\Longleftrightarrow$ for $k \geqslant 2$ graph $\mathfrak{B}_{k}$ is connected


## conjectures about $\mathfrak{B}_{2}(M)$

Conjecture (cyclic for 2-matroid)
Some $\left(B_{1}, B_{2}\right),\left(B_{2}, B_{1}\right)$ are connected by a path $\leqslant r(E)$.

## conjectures about $\mathfrak{B}_{2}(M)$

Conjecture (cyclic for 2-matroid)
Some $\left(B_{1}, B_{2}\right),\left(B_{2}, B_{1}\right)$ are connected by a path $\leqslant r(E)$.

Conjecture (FRS)
$\mathfrak{B}_{2}(M)$ is connected. WEAK $\Leftrightarrow$ STRONG

## conjectures about $\mathfrak{B}_{2}(M)$

## Conjecture <br> Graph $\mathfrak{B}_{2}(M)$ has diameter $r(E)$. <br>  <br> 

Conjecture (cyclic for 2-matroid) Some $\left(B_{1}, B_{2}\right),\left(B_{2}, B_{1}\right)$ are connected by a path $\leqslant r(E)$.

Conjecture (FRS)
$\mathfrak{B}_{2}(M)$ is connected. WEAK $\Leftrightarrow$ STRONG

## conjectures about $\mathfrak{B}_{2}(M)$

## Conjecture <br> Graph $\mathfrak{B}_{2}(M)$ has diameter $r(E)$.

$\Downarrow$

## Conjecture (cyclic for 2-matroid)

Some $\left(B_{1}, B_{2}\right),\left(B_{2}, B_{1}\right)$ are connected by a path $\leqslant r(E)$.


Conjecture (FRS)
$\mathfrak{B}_{2}(M)$ is connected.
WEAK $\Leftrightarrow$ STRONG

## Conjecture

Some vertices $\left(B_{1}, B_{2}\right),\left(B_{2}, B_{1}\right)$ are connected. CLASSIC $\Leftrightarrow$ STRONG

## Thank you!

