

Satoshi Murai (Osaka University) October 9 2015, Osnabrück

Notation

 Δ : simplicial complex on $[n] = \{1, 2, \dots, n\}$ \mathbb{F} : field $b_i(\Delta) = b_i(\Delta; \mathbb{F}) = \dim_{\mathbb{F}} H_i(\Delta; \mathbb{F})$ $\widetilde{b}_i(\Delta) = \widetilde{b}_i(\Delta; \mathbb{F}) = \dim_{\mathbb{F}} \widetilde{H}_i(\Delta; \mathbb{F})$ $\Delta_W = \{F \in \Delta : F \subseteq W\} : \text{ induced subcomplex}$ $lk_{\Lambda}(v) = \{F \in \Delta; F \cup \{v\} \in \Lambda, v \notin F\}$: vertex link

Morse inequality for simplicial complex

Morse Relation (Brehm-Kühnel '86)

OSAKA UNIVERSITY

If Δ is a simplicial complex on [n], then • $b_i(\Delta) \leq \sum_{k=1}^n \widetilde{b}_{i-1}(\operatorname{lk}_{\Delta}(k)_{[k-1]})$ • $\sum_{j=0}^i (-1)^{i-j} b_j(\Delta) \leq \sum_{j=0}^i (-1)^{i-j} \sum_{k=1}^n \widetilde{b}_{i-1}(\operatorname{lk}_{\Delta}(k)_{[k-1]})$

Consider all permutations i_1, i_2, \ldots, i_n of $1, 2, \ldots, n$. Take the average of

$$b_i(\Delta) \le \sum_{k=1}^n \widetilde{b}_{i-1}(\operatorname{lk}_{\Delta}(i_k)_{\{i_1,\dots,i_{k-1}\}})$$

Average of Morse inequalities

OSAKA UNIVERSITY

Definition (Bagchi, Datta '14) $\widetilde{\sigma}_{i-1}(\Delta) = \frac{1}{n+1} \sum_{W \subseteq [n]} \frac{1}{\binom{n}{|W|}} \widetilde{b}_{i-1}(\Delta_W)$ $\mu_i(\Delta) = \sum_{v:\text{vertex}} \widetilde{\sigma}_{i-1}(\text{lk}_{\Delta}(v)).$

Corollary
•
$$b_i(\Delta) \le \mu_i(\Delta)$$

• $\sum_{j=0}^i (-1)^{i-j} b_j(\Delta) \le \sum_{j=0}^i (-1)^{i-j} \mu_j(\Delta)$

Hochster's formula

$S = \mathbb{F}[x_1, \dots, x_n]$: polynomial ring $\mathbb{F}[\Delta] = S/I_{\Delta}$: Stanley-Reisner ring $\beta_{i,j}(\mathbb{F}[\Delta]) = \dim_{\mathbb{F}} \operatorname{Tor}_i^S(\mathbb{F}[\Delta], \mathbb{F})_j$: graded Betti num

Theorem (Hochster's formula)

$$\beta_{i,j}(\mathbb{F}[\Delta]) = \sum_{|W|=j} \widetilde{b}_{i-1}(\Delta_W; \mathbb{F}).$$

Cor
$$\widetilde{\sigma}_{i-1}(\Delta) = \frac{1}{n+1} \sum_{k=0}^{n} \frac{1}{\binom{n}{k}} \beta_{k-i,k}(\mathbb{F}[\Delta]).$$

Research Targets

- Δ : pure
- Δ is a **homology manifold** \Leftrightarrow $lk_{\Delta}(v)$ is Gorenstein*
- Δ is a **combinatorial mfd** \Leftrightarrow lk $_{\Delta}(v)$ is PL-sphere
- Δ is a triangulation of $X \Leftrightarrow ||\Delta|| \cong_{\text{homeo}} X$

Combinatorial C Triangulations Homology manifolds of closed mfds Manifolds

Rmk: To apply $b_i(\Delta) \leq \mu_i(\Delta)$ for homology mfds, we need to study $\tilde{\sigma}_{i-1}$ of Gorenstein^{*} complex.

First Application: Minimal Triangulations of mfds

Minimal Triangulations

Question

For a given topological manifold M, how many vertices do we need to triangulate M?

Example.

7 vertices are required to triangulate $\mathbb{S}^1 \times \mathbb{S}^1$.

7 vert. triangulation of $\mathbb{S}^1 \times \mathbb{S}^1$

Kühnel's conjecture

OSAKA UNIVERSITY

Conjecture (Kühnel)

If Δ is a combinatorial d-mfd with n vertices, then $\binom{n-d+j-2}{j+1} \ge \binom{d+2}{j+1} b_j(\Delta; \mathbb{Q}) \quad \left(j < \frac{d}{2}\right).$

Conjecture I

If Δ is Gorenstein* and has dim d-1, then $\beta_{i,i+j}(I_{\Delta}) \leq \beta_{i,i+j}((x_1,\ldots,x_{n-d-1})^j) \ (j < \frac{d}{2} + 1).$

Proposition

Conj. $I \Rightarrow$ Kühnel's Conj. (for homology mfds).

Conj. I \Rightarrow Kühnel's Conj.

 Δ : homology manifold

 $b_j(\Delta) \le \mu_j(\Delta)$

$$=\sum_{v=1} \widetilde{\sigma}_{j-1}(\mathrm{lk}_{\Delta}(v))$$

Morse inequality

v:vertex

$$\leq \frac{\binom{n-d-j-2}{j+1}}{\binom{d+2}{j+1}}$$

Conjecture I

If Δ is Gorenstein* and has dim d-1, then $\beta_{i,i+j}(I_{\Delta}) \leq \beta_{i,i+j}((x_1,\ldots,x_{n-d-1})^j) \ (j < \frac{d}{2}+1).$

Theorem (M)

- Conjecture A holds for j = 2.
- Conjecture A holds for simplicial polytopes.

My second statement is an immediate consequence of

Theorem (Migliore–Nagel '03)

The Billera–Lee polytopes have the largest graded Betti numbers among all simplicial polytopes with the same *f*-vector.

Second Application: Lower Bound Theorem

Notation

$$\Delta: \text{ simplicial complex of dimension } d-1$$
$$h(\Delta) = (h_0(\Delta), h_1(\Delta), \dots, h_d(\Delta)): h \text{-vector}$$
$$\left(\sum_{k \ge 0} \dim_{\mathbb{F}}(\mathbb{F}[\Delta])_k t^k = \frac{h_0(\Delta) + h_1(\Delta)t + \dots + h_d(\Delta)t^d}{(1-t)^d}\right)$$
$$g_i(\Delta) = h_i(\Delta) - h_{i-1}(\Delta)$$

Barnette's Lower Bound Theroem (Barnette '73) If Δ is the boundary complex of a simplicial polytope of dim ≥ 3 , then $h_2(\Delta) \geq h_1(\Delta)$.

Theorem (Kalai '87, Fogelsanger '88) If Δ is a normal pseudomanifold of dim ≥ 2 , then $h_2(\Delta) \geq h_1(\Delta)$.

- pseudomanifold = pure, strongly connected, each codim 1 face is contained in exactly two facets.
- normal = link of codim >1 face is connected

Strengthen of LBT

Theorem (Novik–Swartz '09 (conjectured by Kalai)) If Δ is a homology manifold of dim $d \ge 3$, then $h_2(\Delta) \ge h_1(\Delta) + \binom{d+2}{2} b_1(\Delta; \mathbb{Q}).$

Theorem (M)

If Δ is a normal pseudomanifold of dim $d \ge 3$, then $h_2(\Delta) \ge h_1(\Delta) + \binom{d+2}{2} b_1(\Delta; \mathbb{F}).$

Proposition

If Δ is a normal pseudomanifold of dim $d-1 \ge 2$, then $\beta_{i,i+2}(I_{\Delta}) \le \beta_{i,i+2}((x_1, \dots, x_{n-d-1})^2).$

Proof of LBT for normal pseudomanifolds.

$$\leq \frac{1}{\binom{d+2}{2}}g_2(\Delta) - 1$$
. Substitute Bounds in the above Thm

Third Application: Tight Triangulations

Tight Triangulation

Definition

$$\Delta \text{ is tight } \Leftrightarrow b_i(\Delta) = \mu_i(\Delta) \text{ for all } i.$$

 $(\Leftrightarrow i : H_i(\Delta) \to H_i(\Delta_W) \text{ is surjective for all } i, W.)$

Conjecture (Kühnel-Lutz '99)

Tight combinatorial manifold is vertex minimal.

Conjecture (Kühnel–Lutz '99)

A combinatorial triangulation of $\mathbb{S}^i \times \mathbb{S}^j$ $(i \leq j)$ is tight if and only if it has exactly i + 2j + 4 vertices.

Conjecture is true when i = j (Kühnel)

Theorem (M)

Suppose j > 2i. If a comb. triangulation of $\mathbb{S}^i \times \mathbb{S}^j$ is tight, then it has exactly i + 2j + 4 vertices.

Proposition

 Δ : tight comb. triangulation of $\mathbb{S}^i \times \mathbb{S}^j$ (i < j). If $(I_{lk_{\Delta}(v)})_{\leq i+1}$ has an (i + 1)-linear resolution for each vertex v, then Δ has exactly i+2j+4 vertices.

 $I_{\leq k}$: ideal generated by polynomials of deg $\leq k$ in I

Theorem (M)

Let Δ be a tight triang. of $\mathbb{S}^i \times \mathbb{S}^j$. If j > 2i, then $(I_{\text{lk}_{\Delta}(v)})_{\leq i+1}$ has an (i+1)-linear resolution.

Theorem (Herzog–Srinivasan)

If I is a monomial ideal generated in deg $\leq r$. Then $\max\{k \in \mathbb{Z} : \beta_{i+1,k}(I) \neq 0\}$ $\leq \max\{k \in \mathbb{Z} : \beta_{i,k}(I) \neq 0\} + r.$

Corollary

If I is a monomial ideal generated in degree r and $\beta_{i,i+k}(I) = 0$ for all i and k = r + 1, ..., 2r - 1, then I has a linear resolution.

Conjecture I

Let Δ be a Gorenstein* complex of dim d-1. Then $\beta_{i,i+j}(I_{\Delta}) \leq \beta_{i,i+j}((x_1,\ldots,x_{n-d-1})^j) \quad (j < \frac{d}{2}+1).$

Conjecture II

If Δ is a tight triangulation of $\mathbb{S}^i \times \mathbb{S}^j$ (i < j), then $(I_{lk_{\Delta}(v)})_{\leq i+1}$ has an (i+1)-linear resolution.