CAP - Categories, Algorithms, and Programming

Sebastian Gutsche and Sebastian Posur

TU Kaiserslautern, RWTH Aachen

September 28, 2015

CAP means Categories, algorithms, and programming

CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP.

CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP.

 CAP derives powerful algorithms and data structures from basic categorical constructions.

CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP.

- CAP derives powerful algorithms and data structures from basic categorical constructions.
- CAP serves as a categorical programming language in which you can realize your code in a categorically structured way.

CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP.

- CAP derives powerful algorithms and data structures from basic categorical constructions.
- CAP serves as a categorical programming language in which you can realize your code in a categorically structured way.
- CAP simplifies complex computations by applying theorems.

CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP.

- CAP derives powerful algorithms and data structures from basic categorical constructions.
- CAP serves as a categorical programming language in which you can realize your code in a categorically structured way.
- CAP simplifies complex computations by applying theorems.

We call this concept categorical programming.

Outline

Motivation

Outline

Motivation

Flavor of categorical programming in CAP

Section 1

Motivation

Wanted: $\ker(\gamma) \xrightarrow{\partial} \operatorname{coker}(\alpha)$.

Start: $c \in \ker(\gamma)$.

This lies in C.

Choose: $b \in \epsilon^{-1}(\{c\})$.

Map: $b \stackrel{\beta}{\mapsto} b'$.

Compute: $a' \in \mu^{-1}(b')$.

Map:
$$a' \mapsto a' + \operatorname{im}(\alpha)$$
.

Result: $c \stackrel{\partial}{\mapsto} a' + \operatorname{im}(\alpha)$.

Result: $c \stackrel{\partial}{\mapsto} a' + \operatorname{im}(\alpha)$. Independent of the **choice**.

Any right inverse can be used.

Q: What if ϵ has no right inverse?

Generalized Morphism Category

Α

Generalized Morphism Category

A abelian category

Generalized Morphism Category

A abelian category $\stackrel{\text{CAP}}{\longrightarrow}$

Generalized Morphism Category

A abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$

Generalized Morphism Category

A abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$

Properties of $G(\mathbf{A})$

6/17

Generalized Morphism Category

A abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$

Properties of $G(\mathbf{A})$

• $A \subseteq G(A)$.

6/17

Generalized Morphism Category

A abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$

Properties of $\overline{G}(\mathbf{A})$

- \bullet $A \subseteq G(A)$.
- Every monomorphism has a canonical left inverse.

Generalized Morphism Category

A abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$

Properties of $G(\mathbf{A})$

- \bullet $A \subseteq G(A)$.
- Every monomorphism has a canonical left inverse.
- Every epimorphism has a canonical right inverse.

Wanted: $\ker(\gamma) \xrightarrow{\partial} \operatorname{coker}(\alpha)$.

ı

$$\epsilon^{-1} \circ \iota$$

$$\beta \circ \epsilon^{-1} \circ \iota$$

$$\mu^{-1} \circ \beta \circ \epsilon^{-1} \circ \iota$$

$$\pi \circ \mu^{-1} \circ \beta \circ \epsilon^{-1} \circ \iota$$

 ∂ is a composition of generalized morphisms!

Realization in CAP

• Generalized morphisms are implemented in CAP

Realization in CAP

• Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$).

- Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$).
- They are used for:

- Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$).
- They are used for:
 - Diagram chases

- Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$).
- They are used for:
 - Diagram chases
 - Spectral sequences

- Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$).
- They are used for:
 - Diagram chases
 - Spectral sequences
 - Localization of categories

- Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$).
- They are used for:
 - Diagram chases
 - Spectral sequences
 - Localization of categories (Serre quotients)

Section 2

Flavor of categorical programming in CAP

Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects.

Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$.

Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$.

Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$.

FiberProduct(α_1, α_2)

① Compute the fiber product of α_1 and α_2 .

Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$.

- **①** Compute the fiber product of α_1 and α_2 .
- **2** Compute the projection β_1 .

Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$.

- **①** Compute the fiber product of α_1 and α_2 .
- **2** Compute the projection β_1 .

Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$.

- **①** Compute the fiber product of α_1 and α_2 .
- **2** Compute the projection β_1 .
- **3** Return the composition $\alpha_1 \circ \beta_1$.

Given $\mu_1: M_1 \to B$ and $\mu_2: M_2 \to B$,

Given $\mu_1: M_1 \to B$ and $\mu_2: M_2 \to B$, compute their fiber product.

$$\begin{array}{ccc}
M_1 \oplus M_2 & \xrightarrow{\pi_1} & M_1 \\
\pi_2 \downarrow & & \downarrow \mu_1 \\
M_2 & \xrightarrow{\mu_2} & B
\end{array}$$

① Compute $M_1 \oplus M_2$ and projection maps.

- **1** Compute $M_1 \oplus M_2$ and projection maps.
- **2** Compute $\delta := \mu_1 \circ \pi_1 \mu_2 \circ \pi_2$.

- **1** Compute $M_1 \oplus M_2$ and projection maps.
- **2** Compute $\delta := \mu_1 \circ \pi_1 \mu_2 \circ \pi_2$.
- **3** Compute the kernel embedding ι of δ

- **1** Compute $M_1 \oplus M_2$ and projection maps.
- **2** Compute $\delta := \mu_1 \circ \pi_1 \mu_2 \circ \pi_2$.
- **3** Compute the kernel embedding ι of δ , $\pi_1 \circ \iota$, and $\pi_2 \circ \iota$.

Let φ be a morphism in an additive category.

Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically . . .

$$M \xrightarrow{\varphi} N$$

Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically . . .

... one has to construct the object $\ker \varphi$,

 $\ker \varphi$

$$M \stackrel{\varphi}{\longrightarrow} N$$

Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically . . .

... one has to construct the object $\ker \varphi$, its embedding into the object M,

$$\ker \varphi \xrightarrow{\kappa} M \xrightarrow{\varphi} N$$

Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically . . .

... one has to construct the object $\ker \varphi$, its embedding into the object M, and for every test object T

Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically . . .

... one has to construct the object $\ker \varphi$, its embedding into the object M, and for every test object T a morphism given by $\ker \varphi$'s universal property.

Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically . . .

... one has to construct the object $\ker \varphi$, its embedding into the object M, and for every test object T a morphism given by $\ker \varphi$'s universal property.

Thus a proper implementation of the kernel needs three algorithms.

Build up your algorithms from basic categorical operations:

Build up your algorithms from basic categorical operations:

Build up your algorithms from basic categorical operations:

Example: Basic operations for fiber product

• Direct sum and projections in summands

Build up your algorithms from basic categorical operations:

- Direct sum and projections in summands
- Composition and subtraction of morphisms

Build up your algorithms from basic categorical operations:

- Direct sum and projections in summands
- Composition and subtraction of morphisms
- Kernel with embedding

Build up your algorithms from basic categorical operations:

- Direct sum and projections in summands
- Composition and subtraction of morphisms
- Kernel with embedding
- Universal property of kernel

Build up your algorithms from basic categorical operations:

Example: Basic operations for fiber product

- Direct sum and projections in summands
- Composition and subtraction of morphisms
- Kernel with embedding
- Universal property of kernel

Basic operations trigger different algorithms, depending on the context:

Build up your algorithms from basic categorical operations:

Example: Basic operations for fiber product

- Direct sum and projections in summands
- Composition and subtraction of morphisms
- Kernel with embedding
- Universal property of kernel

Basic operations trigger different algorithms, depending on the context:

Example: Kernel

Basic operations

Build up your algorithms from basic categorical operations:

Example: Basic operations for fiber product

- Direct sum and projections in summands
- Composition and subtraction of morphisms
- Kernel with embedding
- Universal property of kernel

Basic operations trigger different algorithms, depending on the context:

Example: Kernel

Vector spaces ⊢ Gaussian elimination

Basic operations

Build up your algorithms from basic categorical operations:

Example: Basic operations for fiber product

- Direct sum and projections in summands
- Composition and subtraction of morphisms
- Kernel with embedding
- Universal property of kernel

Basic operations trigger different algorithms, depending on the context:

Example: Kernel

- Vector spaces ⊢ Gaussian elimination
- Modules ⊢ Gröbner basis computation

Once all basic operations for a category **A** are implemented,

Once all basic operations for a category **A** are implemented, CAP can (among other) create

• $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} ,

- $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} ,
- Serre quotient categories of A,

- $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} ,
- Serre quotient categories of A,
- the categories of complexes and cocomplexes of A,

- $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} ,
- Serre quotient categories of A,
- the categories of complexes and cocomplexes of A,
- the categories of filtered objects of A

- $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} ,
- Serre quotient categories of A,
- the categories of complexes and cocomplexes of A,
- the categories of filtered objects of A
- and combinations of those!

Using the basic operations and the constructions described, CAP can compute

spectral sequences,

- spectral sequences,
- diagram chases,

- spectral sequences,
- diagram chases,
- natural isomorphisms,

- spectral sequences,
- diagram chases,
- natural isomorphisms,
- and much more!

$$G(\mathfrak{Coh}(\mathbb{P}^n))$$

$$G\left(\mathfrak{Coh}\left(\mathbb{P}^{n}
ight)
ight) \ \downarrow \ \mathfrak{Coh}\left(\mathbb{P}^{n}
ight)\cong \mathcal{S}-\operatorname{grmod}/\mathcal{S}-\operatorname{grmod}^{0}$$

$$G(\mathfrak{Coh}\left(\mathbb{P}^n
ight))$$
 \downarrow $\mathfrak{Coh}\left(\mathbb{P}^n
ight)\cong S-\operatorname{grmod}/S-\operatorname{grmod}^0$ \downarrow $G(S-\operatorname{grmod})$

$$G(\mathfrak{Coh}\left(\mathbb{P}^n
ight))$$
 \downarrow \downarrow $\mathfrak{Coh}\left(\mathbb{P}^n
ight)\cong S-\operatorname{grmod}/S-\operatorname{grmod}^0$ \downarrow \downarrow $G(S-\operatorname{grmod})$ \downarrow $S-\operatorname{grmod}$

Download CAP

CAP is currently not deposited with GAP. You can download it from GitHub:

https://github.com/homalg-project/CAP_project