CAP - Categories, Algorithms, and Programming #### Sebastian Gutsche and Sebastian Posur TU Kaiserslautern, RWTH Aachen September 28, 2015 CAP means Categories, algorithms, and programming CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP. CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP. CAP derives powerful algorithms and data structures from basic categorical constructions. CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP. - CAP derives powerful algorithms and data structures from basic categorical constructions. - CAP serves as a categorical programming language in which you can realize your code in a categorically structured way. CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP. - CAP derives powerful algorithms and data structures from basic categorical constructions. - CAP serves as a categorical programming language in which you can realize your code in a categorically structured way. - CAP simplifies complex computations by applying theorems. CAP means **Categories**, **algorithms**, **and programming** and is a software project implemented in GAP. - CAP derives powerful algorithms and data structures from basic categorical constructions. - CAP serves as a categorical programming language in which you can realize your code in a categorically structured way. - CAP simplifies complex computations by applying theorems. We call this concept categorical programming. ### Outline Motivation ### Outline Motivation Flavor of categorical programming in CAP #### Section 1 ### Motivation Wanted: $\ker(\gamma) \xrightarrow{\partial} \operatorname{coker}(\alpha)$. Start: $c \in \ker(\gamma)$. This lies in C. **Choose**: $b \in \epsilon^{-1}(\{c\})$. Map: $b \stackrel{\beta}{\mapsto} b'$. Compute: $a' \in \mu^{-1}(b')$. Map: $$a' \mapsto a' + \operatorname{im}(\alpha)$$. Result: $c \stackrel{\partial}{\mapsto} a' + \operatorname{im}(\alpha)$. Result: $c \stackrel{\partial}{\mapsto} a' + \operatorname{im}(\alpha)$. Independent of the **choice**. Any right inverse can be used. **Q:** What if ϵ has no right inverse? Generalized Morphism Category Α Generalized Morphism Category A abelian category #### Generalized Morphism Category **A** abelian category $\stackrel{\text{CAP}}{\longrightarrow}$ #### Generalized Morphism Category **A** abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$ Generalized Morphism Category **A** abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$ Properties of $G(\mathbf{A})$ 6/17 #### Generalized Morphism Category **A** abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$ #### Properties of $G(\mathbf{A})$ • $A \subseteq G(A)$. 6/17 #### Generalized Morphism Category **A** abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$ #### Properties of $\overline{G}(\mathbf{A})$ - \bullet $A \subseteq G(A)$. - Every monomorphism has a canonical left inverse. #### Generalized Morphism Category **A** abelian category $\stackrel{\mathsf{CAP}}{\longrightarrow} G(\mathbf{A})$ #### Properties of $G(\mathbf{A})$ - \bullet $A \subseteq G(A)$. - Every monomorphism has a canonical left inverse. - Every epimorphism has a canonical right inverse. Wanted: $\ker(\gamma) \xrightarrow{\partial} \operatorname{coker}(\alpha)$. ı $$\epsilon^{-1} \circ \iota$$ $$\beta \circ \epsilon^{-1} \circ \iota$$ $$\mu^{-1} \circ \beta \circ \epsilon^{-1} \circ \iota$$ $$\pi \circ \mu^{-1} \circ \beta \circ \epsilon^{-1} \circ \iota$$ ∂ is a composition of generalized morphisms! #### Realization in CAP • Generalized morphisms are implemented in CAP #### Realization in CAP • Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$). - Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$). - They are used for: - Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$). - They are used for: - Diagram chases - Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$). - They are used for: - Diagram chases - Spectral sequences - Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$). - They are used for: - Diagram chases - Spectral sequences - Localization of categories - Generalized morphisms are implemented in CAP ($\mathbf{A} \mapsto G(\mathbf{A})$). - They are used for: - Diagram chases - Spectral sequences - Localization of categories (Serre quotients) #### Section 2 Flavor of categorical programming in CAP Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$. Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$. Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$. FiberProduct(α_1, α_2) **①** Compute the fiber product of α_1 and α_2 . Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$. - **①** Compute the fiber product of α_1 and α_2 . - **2** Compute the projection β_1 . Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$. - **①** Compute the fiber product of α_1 and α_2 . - **2** Compute the projection β_1 . Let M be an object and $N_1 \hookrightarrow M$, $N_2 \hookrightarrow M$ subobjects. Task: Compute $N_1 \cap N_2 \hookrightarrow M$. - **①** Compute the fiber product of α_1 and α_2 . - **2** Compute the projection β_1 . - **3** Return the composition $\alpha_1 \circ \beta_1$. Given $\mu_1: M_1 \to B$ and $\mu_2: M_2 \to B$, Given $\mu_1: M_1 \to B$ and $\mu_2: M_2 \to B$, compute their fiber product. $$\begin{array}{ccc} M_1 \oplus M_2 & \xrightarrow{\pi_1} & M_1 \\ \pi_2 \downarrow & & \downarrow \mu_1 \\ M_2 & \xrightarrow{\mu_2} & B \end{array}$$ **①** Compute $M_1 \oplus M_2$ and projection maps. - **1** Compute $M_1 \oplus M_2$ and projection maps. - **2** Compute $\delta := \mu_1 \circ \pi_1 \mu_2 \circ \pi_2$. - **1** Compute $M_1 \oplus M_2$ and projection maps. - **2** Compute $\delta := \mu_1 \circ \pi_1 \mu_2 \circ \pi_2$. - **3** Compute the kernel embedding ι of δ - **1** Compute $M_1 \oplus M_2$ and projection maps. - **2** Compute $\delta := \mu_1 \circ \pi_1 \mu_2 \circ \pi_2$. - **3** Compute the kernel embedding ι of δ , $\pi_1 \circ \iota$, and $\pi_2 \circ \iota$. Let φ be a morphism in an additive category. Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically . . . $$M \xrightarrow{\varphi} N$$ Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically one has to construct the object $\ker \varphi$, $\ker \varphi$ $$M \stackrel{\varphi}{\longrightarrow} N$$ Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically one has to construct the object $\ker \varphi$, its embedding into the object M, $$\ker \varphi \xrightarrow{\kappa} M \xrightarrow{\varphi} N$$ Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically one has to construct the object $\ker \varphi$, its embedding into the object M, and for every test object T Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically one has to construct the object $\ker \varphi$, its embedding into the object M, and for every test object T a morphism given by $\ker \varphi$'s universal property. Let φ be a morphism in an additive category. To handle the kernel of φ algorithmically one has to construct the object $\ker \varphi$, its embedding into the object M, and for every test object T a morphism given by $\ker \varphi$'s universal property. Thus a proper implementation of the kernel needs three algorithms. Build up your algorithms from basic categorical operations: Build up your algorithms from basic categorical operations: Build up your algorithms from basic categorical operations: #### Example: Basic operations for fiber product • Direct sum and projections in summands Build up your algorithms from basic categorical operations: - Direct sum and projections in summands - Composition and subtraction of morphisms Build up your algorithms from basic categorical operations: - Direct sum and projections in summands - Composition and subtraction of morphisms - Kernel with embedding Build up your algorithms from basic categorical operations: - Direct sum and projections in summands - Composition and subtraction of morphisms - Kernel with embedding - Universal property of kernel Build up your algorithms from basic categorical operations: #### Example: Basic operations for fiber product - Direct sum and projections in summands - Composition and subtraction of morphisms - Kernel with embedding - Universal property of kernel Basic operations trigger different algorithms, depending on the context: Build up your algorithms from basic categorical operations: #### Example: Basic operations for fiber product - Direct sum and projections in summands - Composition and subtraction of morphisms - Kernel with embedding - Universal property of kernel Basic operations trigger different algorithms, depending on the context: #### Example: Kernel ### **Basic operations** Build up your algorithms from basic categorical operations: #### Example: Basic operations for fiber product - Direct sum and projections in summands - Composition and subtraction of morphisms - Kernel with embedding - Universal property of kernel Basic operations trigger different algorithms, depending on the context: #### Example: Kernel Vector spaces ⊢ Gaussian elimination ### **Basic operations** Build up your algorithms from basic categorical operations: #### Example: Basic operations for fiber product - Direct sum and projections in summands - Composition and subtraction of morphisms - Kernel with embedding - Universal property of kernel Basic operations trigger different algorithms, depending on the context: #### Example: Kernel - Vector spaces ⊢ Gaussian elimination - Modules ⊢ Gröbner basis computation Once all basic operations for a category **A** are implemented, Once all basic operations for a category **A** are implemented, CAP can (among other) create • $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} , - $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} , - Serre quotient categories of A, - $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} , - Serre quotient categories of A, - the categories of complexes and cocomplexes of A, - $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} , - Serre quotient categories of A, - the categories of complexes and cocomplexes of A, - the categories of filtered objects of A - $G(\mathbf{A})$, the generalized morphism category of \mathbf{A} , - Serre quotient categories of A, - the categories of complexes and cocomplexes of A, - the categories of filtered objects of A - and combinations of those! Using the basic operations and the constructions described, CAP can compute spectral sequences, - spectral sequences, - diagram chases, - spectral sequences, - diagram chases, - natural isomorphisms, - spectral sequences, - diagram chases, - natural isomorphisms, - and much more! $$G(\mathfrak{Coh}(\mathbb{P}^n))$$ $$G\left(\mathfrak{Coh}\left(\mathbb{P}^{n} ight) ight) \ \downarrow \ \mathfrak{Coh}\left(\mathbb{P}^{n} ight)\cong \mathcal{S}-\operatorname{grmod}/\mathcal{S}-\operatorname{grmod}^{0}$$ $$G(\mathfrak{Coh}\left(\mathbb{P}^n ight))$$ \downarrow $\mathfrak{Coh}\left(\mathbb{P}^n ight)\cong S-\operatorname{grmod}/S-\operatorname{grmod}^0$ \downarrow $G(S-\operatorname{grmod})$ $$G(\mathfrak{Coh}\left(\mathbb{P}^n ight))$$ \downarrow \downarrow $\mathfrak{Coh}\left(\mathbb{P}^n ight)\cong S-\operatorname{grmod}/S-\operatorname{grmod}^0$ \downarrow \downarrow $G(S-\operatorname{grmod})$ \downarrow $S-\operatorname{grmod}$ #### **Download CAP** CAP is currently not deposited with GAP. You can download it from GitHub: https://github.com/homalg-project/CAP_project