Integral Frobenius for Modular Abelian Surfaces

Tommaso Giorgio Centeleghe
University of Heidelberg

Annual Conference for the DFG priority project SPP 1489
Osnabrück, October 1st 2015

Let $N \geq 5$ be an integer, consider the group

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad(\bmod N)\right\}
$$

and let $X_{0}(N)$ be the corresponding modular curve over \mathbb{Q}.

$$
X_{0}(N)=Y_{0}(N) \sqcup\left\{c_{1}, \ldots, c_{h}\right\}
$$

where $Y_{0}(N)$ parametrizes pairs (E, H) given by an elliptic curve E and a cyclic subgroup $H \subset E$ of order N.
The complex points of $Y_{0}(N)$ are described by the quotient

$$
Y_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H},
$$

where \mathcal{H} is the complex upper half plane, and $\Gamma_{0}(N)$ acts on it via Möbius transformations.
These objects have remarkable arithmetic properties, they are a rich source of Galois representations.

There is a family of commuting Hecke operators

$$
T_{\ell}: H^{0}\left(X_{0}(N), \Omega^{1}\right) \longrightarrow H^{0}\left(X_{0}(N), \Omega^{1}\right)
$$

indexed by the primes $\ell \nmid N$.
If f is a common eigenvector, then the corresponding eigenvalues

$$
\Phi_{f}=\left(a_{\ell}\right)_{\ell \nmid N}
$$

are algebraic integers and generate a totally real number field K_{f}.
The Jacobian $J_{0}(N)$ of $X_{0}(N)$ admits an isogeny decomposition (defined over \mathbb{Q})

$$
J_{0}(N) \sim \prod_{f \in \mathcal{E}_{N}} A_{f}
$$

into the product of \mathbb{Q}-simple abelian varieties A_{f} parametrized by the set \mathcal{E}_{N} of common eigenvectors (up to scalar) for the operators T_{ℓ}.

The Hecke action induces a ring homomorphism

$$
\iota_{f}: \mathbb{Z}\left[T_{2}, T_{3}, \ldots, T_{\ell}, \ldots\right]_{\ell \nmid N} \longrightarrow O_{f} \subseteq \operatorname{End}_{\mathbb{Q}}\left(A_{f}\right)
$$

where O_{f} is the order of K_{f} generated by the eigenvalues a_{ℓ}.
Moreover $\left[K_{f}: \mathbb{Q}\right]=\operatorname{dim}\left(A_{f}\right) \Rightarrow A_{f}$ is an Abelian Variety of GL_{2}-type.
To simplify the exposition, from now on assume:

1) O_{f} is the maximal order $O_{K_{f}}$
2) K_{f} has class number one

If ℓ is a prime number, the ℓ-adic Tate module $T_{\ell}\left(A_{f}\right)$ inherits two actions which commute with each other:

$$
\begin{array}{cc}
\text { Galois action } & \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \circlearrowright T_{\ell}\left(A_{f}\right) \\
\text { Hecke action } O_{f} \otimes \mathbb{Z}_{\ell} \circlearrowright T_{\ell}\left(A_{f}\right)
\end{array}
$$

Thanks to assumption 1), we have

$$
O_{f} \otimes \mathbb{Z}_{\ell}=\prod_{\lambda \mid \ell} O_{\lambda}
$$

where O_{λ} is the ring of integers of the local field $K_{f, \lambda}$.

The Hecke action induces a Galois-stable decomposition

$$
T_{\ell}\left(A_{f}\right)=\prod_{\lambda \mid \ell} T_{\lambda}\left(A_{f}\right)
$$

Since $T_{\lambda}\left(A_{f}\right)$ has rank two over O_{λ}, we have a Galois representation

$$
\rho_{f, \lambda}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(O_{\lambda}\right)
$$

that is unramified outside ℓN (Igusa).
Eichler-Shimura: if $p \nmid \ell N$, then $\rho_{f, \lambda}\left(\right.$ Frob $\left._{p}\right)$ has characteristic polynomial

$$
x^{2}-a_{p} x+p
$$

This information determines the conjugacy class of $\rho_{f, \lambda}\left(\operatorname{Frob}_{p}\right)$ in $\mathrm{GL}_{2}\left(K_{f, \lambda}\right)$.
What about the integral conjugacy class of $\rho_{f, \lambda}\left(\operatorname{Frob}_{p}\right)$ in $\mathrm{GL}_{2}\left(O_{\lambda}\right)$?
The aim of this project is to make it computable when A_{f} is a surface. The algorithm we want to construct largely builds upon already existing software.

If the prime ideal $\lambda \subset O_{f}$ divides the discriminant of $x^{2}-a_{p} x+p$ then the action of Frob_{p} on the λ-torsion $A_{f}[\lambda]$ is given by

$$
\left(\begin{array}{ll}
t & 1 \\
0 & t
\end{array}\right) \text { or }\left(\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right)
$$

where t is the double root of $x^{2}-a_{p} x+p \bmod \lambda$.
We cannot decide a priori which of the two possibilities occur.
The integral Frobenius determines in which of the two situations we are.

Theorem (C.)

Let p be a prime $\nmid N$ and assume that conditions 1) and 2) hold. There exists a matrix

$$
\sigma_{p} \in \mathrm{GL}_{2}\left(O_{f}[1 / p]\right)
$$

which gives the integral conjugacy class of $\rho_{f, \lambda}\left(\mathrm{Frob}_{p}\right)$ for any prime λ of O_{f} not dividing p. Moreover, there is a procedure for constructing σ_{p} from a_{p} and the ring $\operatorname{End}_{\mathbb{F}_{p}}\left(A_{f, p}\right)$, where $A_{f, p}$ denotes the reduction of A_{f} modulo p.

The reduction mod p map gives an inclusion $O_{f} \subseteq \operatorname{End}_{\mathbb{F}_{p}}\left(A_{f, p}\right)$. If $\pi_{p}: A_{f, p} \rightarrow A_{f, p}$ denotes the Frobenius isogeny, we then have

$$
O_{f}\left[\pi_{p}\right] \subseteq \operatorname{End}_{\mathbb{F}_{p}}\left(A_{f, p}\right)
$$

where $O_{f}\left[\pi_{p}\right]$ is a certain quadratic extension of O_{f}. Consider the saturation

$$
S_{p}=\left(O_{f}\left[\pi_{p}\right] \otimes \mathbb{Q}\right) \cap \operatorname{End}_{\mathbb{F}_{p}}\left(A_{f, p}\right)
$$

of $O_{f}\left[\pi_{p}\right]$ in $\operatorname{End}_{\mathbb{F}_{p}}\left(A_{f, p}\right)$. There is an ideal $b_{p} \subseteq O_{f}$ such that

$$
O_{f}\left[\pi_{p}\right]=O_{f}+b_{p} S_{p}
$$

The matrix σ_{p} of the theorem can be constructed from a_{p} and b_{p}.

Assume now that A_{f} is an abelian surface. The strategy for computing the matrix σ_{p} is composed of the following steps:
i) finding (if possible) a principal polarization on A_{f} defined over \mathbb{Q};
ii) writing A_{f} as the Jacobian of a genus two curve C_{f} defined over \mathbb{Q};
iii) computing the endomorphism ring of $\operatorname{Jac}\left(C_{f} \bmod p\right) \simeq A_{f, p}$;
iv) applying the theoretical result to construct σ_{p}.

The steps i) and ii) are based on an algorithm constructed by González-Jiménez, González and Guàrdia in "Computations on Modular Jacobian Surfaces", Lecture Notes in Computer Science, 2369 (2002).

The step iii) employs a software developed by Bisson in "Computing endomorphism rings of abelian varieties of dimension two", Mathematics of Computation (to appear)

