Algorithmic Isomorphism Classification of Modular Cohomology Rings of Finite Groups

Simon King

Joint work with B. Eick, D. Green, G. Ellis

FSU Jena (Univ. at Cologne since today), DFG project KI 861/2-1

Jahrestagung SPP 1489, Osnabrück, October 01, 2015

G finite group, p prime dividing |G|. $H^*(G) := H^*(G; \mathbb{F}_p)$

• Arises in topology, number theory, representation theory, ...

G finite group, p prime dividing |G|. $H^*(G) := H^*(G; \mathbb{F}_p)$

- Arises in topology, number theory, representation theory, ...
- Is a f.p. graded commutative \mathbb{F}_p -algebra determined by G.

G finite group, p prime dividing |G|. $H^*(G) := H^*(G; \mathbb{F}_p)$

- Arises in topology, number theory, representation theory, ...
- Is a f.p. graded commutative \mathbb{F}_p -algebra determined by G.
- Contravariant functor. $U \leq G \rightsquigarrow$ restriction $\operatorname{res}_U^G : H^*(G) \to H^*(U)$.

G finite group, p prime dividing |G|. $H^*(G) := H^*(G; \mathbb{F}_p)$

- Arises in topology, number theory, representation theory, ...
- Is a f.p. graded commutative \mathbb{F}_p -algebra determined by G.
- Contravariant functor. $U \leq G \rightsquigarrow$ restriction $\operatorname{res}_U^G : H^*(G) \to H^*(U)$.

Carlson [2005], proved for p = 2, conjectured for p > 2

For any $c \in \mathbb{N}$, there are only finitely many graded isomorphism types for the modular cohomology rings of finite *p*-groups of coclass *c*.

G finite group, p prime dividing |G|. $H^*(G) := H^*(G; \mathbb{F}_p)$

- Arises in topology, number theory, representation theory, ...
- Is a f.p. graded commutative \mathbb{F}_p -algebra determined by G.
- Contravariant functor. $U \leq G \rightsquigarrow$ restriction $\operatorname{res}_U^G : H^*(G) \to H^*(U)$.

Carlson [2005], proved for p = 2, conjectured for p > 2

For any $c \in \mathbb{N}$, there are only finitely many graded isomorphism types for the modular cohomology rings of finite *p*-groups of coclass *c*. How many?

G finite group, p prime dividing |G|. $H^*(G) := H^*(G; \mathbb{F}_p)$

- Arises in topology, number theory, representation theory, ...
- Is a f.p. graded commutative \mathbb{F}_p -algebra determined by G.
- Contravariant functor. $U \leq G \rightsquigarrow$ restriction $\operatorname{res}_U^G : H^*(G) \to H^*(U)$.

Carlson [2005], proved for p = 2, conjectured for p > 2

For any $c \in \mathbb{N}$, there are only finitely many graded isomorphism types for the modular cohomology rings of finite *p*-groups of coclass *c*. How many?

Conjecture of Eick and Leedham-Green [2008]

In each "coclass family" of finite *p*-groups, all but finitely many groups have isomorphic modular cohomology rings.

G finite group, p prime dividing |G|. $H^*(G) := H^*(G; \mathbb{F}_p)$

- Arises in topology, number theory, representation theory, ...
- Is a f.p. graded commutative \mathbb{F}_p -algebra determined by G.
- Contravariant functor. $U \leq G \rightsquigarrow$ restriction $\operatorname{res}_U^G : H^*(G) \to H^*(U)$.

Carlson [2005], proved for p = 2, conjectured for p > 2

For any $c \in \mathbb{N}$, there are only finitely many graded isomorphism types for the modular cohomology rings of finite *p*-groups of coclass *c*. How many?

Conjecture of Eick and Leedham-Green [2008]

In each "coclass family" of finite *p*-groups, all but finitely many groups have isomorphic modular cohomology rings. How many exceptions?

G finite group, p prime dividing |G|. $H^*(G) := H^*(G; \mathbb{F}_p)$

- Arises in topology, number theory, representation theory, ...
- Is a f.p. graded commutative \mathbb{F}_p -algebra determined by G.
- Contravariant functor. $U \leq G \rightsquigarrow$ restriction $\operatorname{res}_U^G : H^*(G) \to H^*(U)$.

Carlson [2005], proved for p = 2, conjectured for p > 2

For any $c \in \mathbb{N}$, there are only finitely many graded isomorphism types for the modular cohomology rings of finite *p*-groups of coclass *c*. How many?

Conjecture of Eick and Leedham-Green [2008]

In each "coclass family" of finite *p*-groups, all but finitely many groups have isomorphic modular cohomology rings. How many exceptions?

Do computer experiments!

• How to compute $H^*(G)$?

Simon King (Jena/Cologne)

Classification of Modular Group Cohomology

Osnabrück, Oct 01, 2015

1 / 14

• How to test $H^*(G_1) \cong H^*(G_2)$?

Outline

Computational results

- Minimal ring presentations of cohomology rings
- Working with the cohomology rings
- Isomorphism classes of cohomology rings

Algorithms in Group Cohomology

- Computing $H^d(G)$
- A tower of subgroups for Co₃
- Completeness criteria

Finding graded algebra isomorphisms

- Finitary algebras
- Partial isomorphism tests

A non-commutative *F*₅ algorithm

Optional package for SageMath (K, Green)

- http://users.minet.uni-jena.de/cohomology/documentation/
- Results: http://users.minet.uni-jena.de/~king/cohomology

Optional package for SageMath (K, Green)

- http://users.minet.uni-jena.de/cohomology/documentation/
- Results: http://users.minet.uni-jena.de/~king/cohomology

All groups of orders 64 and 128; all but 6 groups of order 243

Carlson needed \sim 8 months comp. time [1997-2001] for order 64.

Optional package for SageMath (K, Green)

- http://users.minet.uni-jena.de/cohomology/documentation/
- Results: http://users.minet.uni-jena.de/~king/cohomology

All groups of orders 64 and 128; all but 6 groups of order 243

Carlson needed ~ 8 months comp. time [1997-2001] for order 64. We need ~ 30 minutes for order 64, about 2 months for order 128.

Optional package for SageMath (K, Green)

- http://users.minet.uni-jena.de/cohomology/documentation/
- Results: http://users.minet.uni-jena.de/~king/cohomology

All groups of orders 64 and 128; all but 6 groups of order 243

Carlson needed ~ 8 months comp. time [1997-2001] for order 64. We need ~ 30 minutes for order 64, about 2 months for order 128.

Interesting non prime power groups

We got the modular cohomology for different primes of (among others)

Optional package for SageMath (K, Green)

- http://users.minet.uni-jena.de/cohomology/documentation/
- Results: http://users.minet.uni-jena.de/~king/cohomology

All groups of orders 64 and 128; all but 6 groups of order 243

Carlson needed ~ 8 months comp. time [1997-2001] for order 64. We need ~ 30 minutes for order 64, about 2 months for order 128.

Interesting non prime power groups

We got the modular cohomology for different primes of (among others)

• *HS*, *McL*, Janko groups (not J_4), Mathieu groups (not M_{24})

Optional package for SageMath (K, Green)

- http://users.minet.uni-jena.de/cohomology/documentation/
- Results: http://users.minet.uni-jena.de/~king/cohomology

All groups of orders 64 and 128; all but 6 groups of order 243

Carlson needed ~ 8 months comp. time [1997-2001] for order 64. We need ~ 30 minutes for order 64, about 2 months for order 128.

Interesting non prime power groups

We got the modular cohomology for different primes of (among others)

- HS, McL, Janko groups (not J_4), Mathieu groups (not M_{24})
- [K, Green, Ellis 2011]: $H^*(Co_3; \mathbb{F}_2)$ is Cohen-Macaulay.

Optional package for SageMath (K, Green)

- http://users.minet.uni-jena.de/cohomology/documentation/
- Results: http://users.minet.uni-jena.de/~king/cohomology

All groups of orders 64 and 128; all but 6 groups of order 243

Carlson needed ~ 8 months comp. time [1997-2001] for order 64. We need ~ 30 minutes for order 64, about 2 months for order 128.

Interesting non prime power groups

We got the modular cohomology for different primes of (among others)

- HS, McL, Janko groups (not J_4), Mathieu groups (not M_{24})
- [K, Green, Ellis 2011]: $H^*(Co_3; \mathbb{F}_2)$ is Cohen-Macaulay.
- Sz(8): minimal presentation of H^{*}(Sz(8); 𝔽₂) has 102 generators of maximal degree 29 and 4790 relations of maximal degree 58.

The SageMath package can also compute...

• Poincaré series, depth, *a*-invariants, ... of $H^*(G)$

The SageMath package can also compute...

- Poincaré series, depth, a-invariants, ... of H^{*}(G)
- Massey products

The SageMath package can also compute...

- Poincaré series, depth, a-invariants, ... of H*(G)
- Massey products
- Via induced homomorphisms:
 - nilradical
 - essential ideals.

 $Syl_2(U_3(4))$, $Syl_2(U_3(4)) \times C_2$ are the only known examples for which the essential ideal does not square to zero.

The SageMath package can also compute...

- Poincaré series, depth, a-invariants, ... of H^{*}(G)
- Massey products
- Via induced homomorphisms:
 - nilradical
 - essential ideals.

 $Syl_2(U_3(4))$, $Syl_2(U_3(4)) \times C_2$ are the only known examples for which the essential ideal does not square to zero.

Hambleton [2013]: Is $H^2(G; \mathbb{F}_2)$ detected by metabelian groups?

The SageMath package can also compute...

- Poincaré series, depth, a-invariants, ... of H^{*}(G)
- Massey products
- Via induced homomorphisms:
 - nilradical
 - essential ideals.

 $Syl_2(U_3(4))$, $Syl_2(U_3(4)) \times C_2$ are the only known examples for which the essential ideal does not square to zero.

Hambleton [2013]: Is $H^2(G; \mathbb{F}_2)$ detected by metabelian groups?

Computational data suggest: H^{*}(G; 𝔽_p) (any degree, any prime p) is detected by metabelian groups.

The SageMath package can also compute...

- Poincaré series, depth, a-invariants, ... of H^{*}(G)
- Massey products
- Via induced homomorphisms:
 - nilradical
 - essential ideals.

 $Syl_2(U_3(4))$, $Syl_2(U_3(4)) \times C_2$ are the only known examples for which the essential ideal does not square to zero.

Hambleton [2013]: Is $H^2(G; \mathbb{F}_2)$ detected by metabelian groups?

- Computational data suggest: H^{*}(G; 𝔽_p) (any degree, any prime p) is detected by metabelian groups.
- Green [2015]: There is a non-metabelian group G of order 3¹⁶ that is *p*-centric (hence, has essential classes).

Isomorphism classes, sorted by group order

Work i

Eick, K [2015], paper accepted, software not published yet

We provide a complete classification of $H^*(G)$ up to isomorphisms of graded \mathbb{F}_p -algebras, for *p*-groups *G*, $|G| \leq 81$.

G	#groups	#rings	cum. #groups	cum. #rings
2	1	1	1	1
4	2	2	3	3
8	5	5	8	7
16	14	14	22	18
32	51	48	73	55
64	267	239	340	260
3	1	1	1	1
9	2	2	3	2
27	5	5	8	5
81	15	13	23	14
n progress: $ G \le 128$.				

Simon King (Jena/Cologne) Classification of Modular Group Cohomology Osnabrück, Oct 01, 2015 5 / 14

Algorithms in Group Cohomology

Computational approaches

Topology

Construct Classifying spaces. — Tailor made.

Algorithms in Group Cohomology

Computational approaches

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

- Lyndon-Hochschild-Serre: extrasp. 2-groups (Quillen (1971])
- Eilenberg-Moore: groups of order 32 (Rusin [1989])

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

- Lyndon-Hochschild-Serre: extrasp. 2-groups (Quillen (1971])
- Eilenberg-Moore: groups of order 32 (Rusin [1989])

But not general enough,

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

- Lyndon-Hochschild-Serre: extrasp. 2-groups (Quillen (1971])
- Eilenberg-Moore: groups of order 32 (Rusin [1989])

But not general enough, difficult to implement and to interprete.

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

- Lyndon-Hochschild-Serre: extrasp. 2-groups (Quillen (1971])
- Eilenberg-Moore: groups of order 32 (Rusin [1989])

But not general enough, difficult to implement and to interprete.

Via approximation $\tau_n H^*(G)$ of $H^*(G)$ à la [Carlson 2001]

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

- Lyndon-Hochschild-Serre: extrasp. 2-groups (Quillen (1971])
- Eilenberg-Moore: groups of order 32 (Rusin [1989])

But not general enough, difficult to implement and to interprete.

Via approximation $\tau_n H^*(G)$ of $H^*(G)$ à la [Carlson 2001]

- Compute $H^d(G)$ for $d \leq n$, products out to degree n, and relations.
- *τ_nH*^{*}(G) is presented by generators and relations of H^{*}(G)
 of degree at most *n*.

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

- Lyndon-Hochschild-Serre: extrasp. 2-groups (Quillen (1971])
- Eilenberg-Moore: groups of order 32 (Rusin [1989])

But not general enough, difficult to implement and to interprete.

Via approximation $\tau_n H^*(G)$ of $H^*(G)$ à la [Carlson 2001]

- Compute $H^d(G)$ for $d \le n$, products out to degree n, and relations.
- *τ_nH*^{*}(G) is presented by generators and relations of H^{*}(G)
 of degree at most *n*.
- If *n* is large enough: $H^*(G) \cong \tau_n H^*(G)$.

Algorithms in Group Cohomology Computing $H^{d}(G)$

Computing $H^d(G)$

For G a prime power group: Via minimal projective resolutions.

• E. Green, Solberg, Zacharia [2001]: Use non-commutative standard bases to compute kernels, and then minimise the generating set.

- E. Green, Solberg, Zacharia [2001]: Use non-commutative standard bases to compute kernels, and then minimise the generating set.
- Carlson [1997-2001]: Use linear algebra.

- E. Green, Solberg, Zacharia [2001]: Use non-commutative standard bases to compute kernels, and then minimise the generating set.
- Carlson [1997-2001]: Use linear algebra.
- D. Green [2001]: *Heady standard bases* computing a minimal generating set of the kernel in a single step. Used in SageMath.

- E. Green, Solberg, Zacharia [2001]: Use non-commutative standard bases to compute kernels, and then minimise the generating set.
- Carlson [1997-2001]: Use linear algebra.
- D. Green [2001]: *Heady standard bases* computing a minimal generating set of the kernel in a single step. Used in SageMath.
- K [2014]: Non-commutative F₅ algorithm finds *Loewy layers* in one step and avoids redundant computations. Soon in SageMath.
Computing $H^d(G)$

For G a prime power group: Via minimal projective resolutions.

- E. Green, Solberg, Zacharia [2001]: Use non-commutative standard bases to compute kernels, and then minimise the generating set.
- Carlson [1997-2001]: Use linear algebra.
- D. Green [2001]: *Heady standard bases* computing a minimal generating set of the kernel in a single step. Used in SageMath.
- K [2014]: Non-commutative F₅ algorithm finds *Loewy layers* in one step and avoids redundant computations. Soon in SageMath.

For G not a prime power group: Stable elements [Cartan–Eilenberg 1956]

• If
$$Syl_p(G) \ni S \leq U \leq G$$
, then $\operatorname{res}_U^G : H^*(G) \hookrightarrow H^*(U)$.

Computing $H^d(G)$

For G a prime power group: Via minimal projective resolutions.

- E. Green, Solberg, Zacharia [2001]: Use non-commutative standard bases to compute kernels, and then minimise the generating set.
- Carlson [1997-2001]: Use linear algebra.
- D. Green [2001]: *Heady standard bases* computing a minimal generating set of the kernel in a single step. Used in SageMath.
- K [2014]: Non-commutative F₅ algorithm finds *Loewy layers* in one step and avoids redundant computations. Soon in SageMath.

For G not a prime power group: Stable elements [Cartan–Eilenberg 1956]

- If $Syl_p(G) \ni S \leq U \leq G$, then $\operatorname{res}_U^G : H^*(G) \hookrightarrow H^*(U)$.
- The sub-algebra is determined by stability conditions, corresponding to double cosets $U \setminus G/U$.

Computing $H^d(G)$

For G a prime power group: Via minimal projective resolutions.

- E. Green, Solberg, Zacharia [2001]: Use non-commutative standard bases to compute kernels, and then minimise the generating set.
- Carlson [1997-2001]: Use linear algebra.
- D. Green [2001]: *Heady standard bases* computing a minimal generating set of the kernel in a single step. Used in SageMath.
- K [2014]: Non-commutative F₅ algorithm finds *Loewy layers* in one step and avoids redundant computations. Soon in SageMath.

For G not a prime power group: Stable elements [Cartan–Eilenberg 1956]

- If $Syl_p(G) \ni S \leq U \leq G$, then $\operatorname{res}_U^G : H^*(G) \hookrightarrow H^*(U)$.
- The sub-algebra is determined by stability conditions, corresponding to double cosets $U \setminus G/U$.
- Holt [1985] suggests to use a tower $S = U_0 \leq U_1 \leq ... \leq U_k = G$

Why should one use a subgroup tower?

Why should one use a subgroup tower?

• For $G = Co_3$: |S| = 1024 and $|S \setminus G/S| = 484\,680$.

Why should one use a subgroup tower?

• For
$$G = Co_3$$
: $|S| = 1024$ and $|S \setminus G/S| = 484680$.

•
$$S = U_0 \leq U_1 = N_G(\underbrace{Z_2(S)}_{\cong C_4 \times C_2}) \leq U_2 = N_G(C_4) \leq U_3 = N_G(\underbrace{Z(S)}_{\cong C_2}) \leq U_4 = G$$

Why should one use a subgroup tower?

• For
$$G = Co_3$$
: $|S| = 1024$ and $|S \setminus G/S| = 484680$.

•
$$S = U_0 \leq U_1 = N_G(\underbrace{Z_2(S)}_{\cong C_4 \times C_2}) \leq U_2 = N_G(C_4) \leq U_3 = N_G(\underbrace{Z(S)}_{\cong C_2}) \leq U_4 = G$$

• $\frac{i | 1 | 2 | 3 | 4}{|U_{i-1} \setminus U_i/U_{i-1}| | 2 | 3 | 3 | 7}$
Discarding trivial double cosets, only 11 stability conditions remain.

Why should one use a subgroup tower?

• For
$$G = Co_3$$
: $|S| = 1024$ and $|S \setminus G/S| = 484680$.

•
$$S = U_0 \leq U_1 = N_G(\underbrace{Z_2(S)}_{\cong C_4 \times C_2}) \leq U_2 = N_G(C_4) \leq U_3 = N_G(\underbrace{Z(S)}_{\cong C_2}) \leq U_4 = G$$

• $\frac{i | 1 | 2 | 3 | 4}{|U_{i-1} \setminus U_i/U_{i-1}| | 2 | 3 | 3 | 7}$
Discarding trivial double cosets, only 11 stability conditions remain.

Theorem [K, Green, Ellis 2011]

H^{*}(*Co*₃; 𝔽₂) is Cohen–Macaulay, presentable in degree 33 with generators up to degree 15.

Why should one use a subgroup tower?

• For
$$G = Co_3$$
: $|S| = 1024$ and $|S \setminus G/S| = 484680$.

•
$$S = U_0 \leq U_1 = N_G(\underbrace{Z_2(S)}_{\cong C_4 \times C_2}) \leq U_2 = N_G(C_4) \leq U_3 = N_G(\underbrace{Z(S)}_{\cong C_2}) \leq U_4 = G$$

• $\frac{i | 1 | 2 | 3 | 4}{|U_{i-1} \setminus U_i / U_{i-1}| | 2 | 3 | 3 | 7}$
Discarding trivial double cosets, only 11 stability conditions remain.

Theorem [K, Green, Ellis 2011]

- *H*^{*}(*Co*₃; 𝔽₂) is Cohen–Macaulay, presentable in degree 33 with generators up to degree 15.
- nilrad $(H^*(Co_3; \mathbb{F}_2)) = 0.$
- $H^*(Co_3; \mathbb{F}_2)$ is detected on max. elementary abelian 2-subgroups.

• In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.

- In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.
- *n* needs to be "large enough" wrt. parameter degrees.

- In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.
- *n* needs to be "large enough" wrt. parameter degrees.

Benson [2004]

Dickson invariants \rightsquigarrow filter regular HSOP, maxdeg $\sim p^{\mathrm{rk}_p(G)}$.

- In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.
- *n* needs to be "large enough" wrt. parameter degrees.

Benson [2004]

Dickson invariants \rightsquigarrow filter regular HSOP, maxdeg $\sim p^{\mathrm{rk}_p(G)}$. Expl $\mathrm{Syl}_2(Co_3)$: Degrees 8, 12, 14, 15; detect completeness in degree 46.

- In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.
- *n* needs to be "large enough" wrt. parameter degrees.

Benson [2004]

Dickson invariants \rightsquigarrow filter regular HSOP, maxdeg $\sim p^{\mathrm{rk}_p(G)}$. Expl Syl₂(*Co*₃): Degrees 8, 12, 14, 15; detect completeness in degree 46.

Green, K [2011] (modified Benson test)

• $|G| = p^n$: Dickson invariants \rightsquigarrow f.r. HSOP $X = \{x_1, ..., x_r\}$, maxdeg $\sim p^{\mathrm{rk}_p(G) - \mathrm{rk}(Z(G))}$.

- In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.
- *n* needs to be "large enough" wrt. parameter degrees.

Benson [2004]

Dickson invariants \rightsquigarrow filter regular HSOP, maxdeg $\sim p^{\mathrm{rk}_p(G)}$. Expl Syl₂(*Co*₃): Degrees 8, 12, 14, 15; detect completeness in degree 46.

Green, K [2011] (modified Benson test)

• $|G| = p^n$: Dickson invariants \rightsquigarrow f.r. HSOP $X = \{x_1, ..., x_r\}$, maxdeg $\sim p^{\mathrm{rk}_p(G) - \mathrm{rk}(Z(G))}$. Expl: Degrees 8, 4, 6, 7; detects in degree 22.

- In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.
- *n* needs to be "large enough" wrt. parameter degrees.

Benson [2004]

Dickson invariants \rightsquigarrow filter regular HSOP, maxdeg $\sim p^{\mathrm{rk}_p(G)}$. Expl Syl₂(*Co*₃): Degrees 8, 12, 14, 15; detect completeness in degree 46.

Green, K [2011] (modified Benson test)

- $|G| = p^n$: Dickson invariants \rightsquigarrow f.r. HSOP $X = \{x_1, ..., x_r\}$, maxdeg $\sim p^{\mathrm{rk}_p(G) \mathrm{rk}(Z(G))}$. Expl: Degrees 8, 4, 6, 7; detects in degree 22.
- General G: Techniques to get smaller HSOP from given HSOP.

- In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.
- *n* needs to be "large enough" wrt. parameter degrees.

Benson [2004]

Dickson invariants \rightsquigarrow filter regular HSOP, maxdeg $\sim p^{\mathrm{rk}_p(G)}$. Expl Syl₂(*Co*₃): Degrees 8, 12, 14, 15; detect completeness in degree 46.

Green, K [2011] (modified Benson test)

- $|G| = p^n$: Dickson invariants \rightsquigarrow f.r. HSOP $X = \{x_1, ..., x_r\}$, maxdeg $\sim p^{\mathrm{rk}_p(G) \mathrm{rk}(Z(G))}$. Expl: Degrees 8, 4, 6, 7; detects in degree 22.
- General G: Techniques to get smaller HSOP from given HSOP.
- Find $d, m: \exists$ finite field extension k/\mathbb{F}_p : $H^*(G; k)$ has f.r. HSOP $\tilde{X} = \{x_1, ..., x_{r-m}, \tilde{x}_1, ..., \tilde{x}_m\}$ and $|\tilde{x}_i| = d$

- In $\tau_n H^*(G)$, find parameters for $H^*(G)$ on which to perform tests.
- *n* needs to be "large enough" wrt. parameter degrees.

Benson [2004]

Dickson invariants \rightsquigarrow filter regular HSOP, maxdeg $\sim p^{\mathrm{rk}_p(G)}$. Expl Syl₂(*Co*₃): Degrees 8, 12, 14, 15; detect completeness in degree 46.

Green, K [2011] (modified Benson test)

- $|G| = p^n$: Dickson invariants \rightsquigarrow f.r. HSOP $X = \{x_1, ..., x_r\}$, maxdeg $\sim p^{\mathrm{rk}_p(G) \mathrm{rk}(Z(G))}$. Expl: Degrees 8, 4, 6, 7; detects in degree 22.
- General G: Techniques to get smaller HSOP from given HSOP.
- Find $d, m: \exists$ finite field extension $k/\mathbb{F}_p: H^*(G; k)$ has f.r. HSOP $\tilde{X} = \{x_1, ..., x_{r-m}, \tilde{x}_1, ..., \tilde{x}_m\}$ and $|\tilde{x}_i| = d$

Use X for test, \tilde{X} for bound. Expl: Degrees 8, 4, 2, 2; detects in degree 14.

• Let $X \subset \tau_n H^*(G)$ be so that $H^*(G)$ is finite over $\langle \langle X \rangle \rangle$.

Let X ⊂ τ_nH*(G) be so that H*(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of τ_nH^{*}(G) as a (⟨X⟩⟩-module needs to be computed.

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of $\tau_n H^*(G)$ as a $\langle \langle X \rangle \rangle$ -module needs to be computed.
- Usually at least as good as the modified Benson test.

- Let X ⊂ τ_nH*(G) be so that H*(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of $\tau_n H^*(G)$ as a $\langle \langle X \rangle \rangle$ -module needs to be computed.
- Usually at least as good as the modified Benson test.

K [2013], if |G| is not prime power, $S \leq U \leq G$

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of τ_nH^{*}(G) as a ⟨⟨X⟩⟩-module needs to be computed.
- Usually at least as good as the modified Benson test.

K [2013], if |G| is not prime power, $S \le U \le G$

Bound for the generator degrees of H*(G) in terms of the generating degree of H*(U) as a τ_nH*(G)-module.

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of τ_nH^{*}(G) as a ⟨⟨X⟩⟩-module needs to be computed.
- Usually at least as good as the modified Benson test.

K [2013], if |G| is not prime power, $S \leq U \leq G$

Bound for the generator degrees of H*(G) in terms of the generating degree of H*(U) as a τ_nH*(G)-module.
 Very useful: Stability conditions only in *lower* degrees. Expl: Sz(8)

- Let X ⊂ τ_nH^{*}(G) be so that H^{*}(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of τ_nH^{*}(G) as a ⟨⟨X⟩⟩-module needs to be computed.
- Usually at least as good as the modified Benson test.

K [2013], if |G| is not prime power, $S \le U \le G$

Bound for the generator degrees of H*(G) in terms of the generating degree of H*(U) as a τ_nH*(G)-module.
 Very useful: Stability conditions only in *lower* degrees. Expl: Sz(8)

Ompleteness criterion in terms of

• parameter degrees for $H^*(G; k)$, k/\mathbb{F}_p ,

- Let X ⊂ τ_nH*(G) be so that H*(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of τ_nH^{*}(G) as a ⟨⟨X⟩⟩-module needs to be computed.
- Usually at least as good as the modified Benson test.

K [2013], if |G| is not prime power, $S \le U \le G$

Bound for the generator degrees of H*(G) in terms of the generating degree of H*(U) as a τ_nH*(G)-module.
 Very useful: Stability conditions only in *lower* degrees. Expl: Sz(8)

Ompleteness criterion in terms of

- parameter degrees for $H^*(G; k)$, k/\mathbb{F}_p ,
- depth $(H^*(U))$,

- Let X ⊂ τ_nH*(G) be so that H*(G) is finite over ⟨⟨X⟩⟩.
 E.g., X a subset of a generating set → rather small degrees.
- Easy to use: Only the generating degree of τ_nH^{*}(G) as a ⟨⟨X⟩⟩-module needs to be computed.
- Usually at least as good as the modified Benson test.

K [2013], if |G| is not prime power, $S \le U \le G$

Bound for the generator degrees of H*(G) in terms of the generating degree of H*(U) as a τ_nH*(G)-module.
 Very useful: Stability conditions only in *lower* degrees. Expl: Sz(8)

Ompleteness criterion in terms of

- parameter degrees for $H^*(G;k)$, k/\mathbb{F}_p ,
- depth $(H^*(U))$,
- Poincaré series of $\tau_n H^*(G)$.

Finding graded algebra isomorphisms

Finitary algebras

Finding graded algebra isomorphisms [Eick, K 2015]

Setting: "finitary algebras"

• Hypothesis: k finite field, R_1, R_2 graded associative unital k-algebras, finitely generated in positive degrees.

Finding graded algebra isomorphisms Finitary algebras

Finding graded algebra isomorphisms [Eick, K 2015]

Setting: "finitary algebras"

- Hypothesis: *k* finite field, *R*₁, *R*₂ graded associative unital *k*-algebras, finitely generated in positive degrees.
- Thus, $R_i^{(d)}$ is a *finite set* for all *d*.

Setting: "finitary algebras"

- Hypothesis: *k* finite field, *R*₁, *R*₂ graded associative unital *k*-algebras, finitely generated in positive degrees.
- Thus, $R_i^{(d)}$ is a *finite set* for all *d*.

• Also, we can compute in *nilpotent quotients* $R_i^{(>0)} / (R_i^{(>0)})^k$.

Setting: "finitary algebras"

- Hypothesis: *k* finite field, *R*₁, *R*₂ graded associative unital *k*-algebras, finitely generated in positive degrees.
- Thus, $R_i^{(d)}$ is a *finite set* for all *d*.
- Also, we can compute in *nilpotent quotients* $R_i^{(>0)} / (R_i^{(>0)})^k$.
- For cohomology rings, we can even use Gröbner bases.

Setting: "finitary algebras"

- Hypothesis: *k* finite field, *R*₁, *R*₂ graded associative unital *k*-algebras, finitely generated in positive degrees.
- Thus, $R_i^{(d)}$ is a *finite set* for all *d*.
- Also, we can compute in *nilpotent quotients* $R_i^{(>0)} / (R_i^{(>0)})^k$.
- For cohomology rings, we can even use Gröbner bases.

Assume nilradical, Poincaré series equal. Very naive isomorphism test:

• Let $\{g_1, ..., g_n\}$ be a homogeneous generating set for R_1 .

Setting: "finitary algebras"

- Hypothesis: *k* finite field, *R*₁, *R*₂ graded associative unital *k*-algebras, finitely generated in positive degrees.
- Thus, $R_i^{(d)}$ is a *finite set* for all *d*.
- Also, we can compute in *nilpotent quotients* $R_i^{(>0)} / (R_i^{(>0)})^k$.
- For cohomology rings, we can even use Gröbner bases.

Assume nilradical, Poincaré series equal. Very naive isomorphism test:

- Let $\{g_1, ..., g_n\}$ be a homogeneous generating set for R_1 .
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $\psi(g_i) = x_i$ extends to a graded isomorphism $\psi : R_1 \to R_2$.

Setting: "finitary algebras"

- Hypothesis: *k* finite field, *R*₁, *R*₂ graded associative unital *k*-algebras, finitely generated in positive degrees.
- Thus, $R_i^{(d)}$ is a *finite set* for all *d*.
- Also, we can compute in *nilpotent quotients* $R_i^{(>0)} / \left(R_i^{(>0)} \right)^k$.
- For cohomology rings, we can even use Gröbner bases.

Assume nilradical, Poincaré series equal. Very naive isomorphism test:

- Let $\{g_1, ..., g_n\}$ be a homogeneous generating set for R_1 .
- For any $\{x_1, ..., x_n\}$ with $x_i \in R_2^{(|g_i|)}$ (i = 1, ..., n), we can test if $\psi(g_i) = x_i$ extends to a graded isomorphism $\psi : R_1 \to R_2$.
- Only *finitely many choices* for {x₁,...,x_n}. Hence we can test in finite time whether or not R₁ ≅ R₂.

Detecting non-extendible partial assignments

Let $R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$.
Let $R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$.

If $(g_i \mapsto x_i \text{ for all } i \in I \subset \{1, ..., n\})$ extends to an isomorphism, then...

Partial isomorphism tests

Detecting non-extendible partial assignments

Let $R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$.

If $(g_i \mapsto x_i \text{ for all } i \in I \subset \{1, ..., n\})$ extends to an isomorphism, then...

9 equal Poincaré series of $G_I := \langle g_i | i \in I \rangle \subset R_1$, $X_I := \langle x_i | i \in I \rangle \subset R_2$.

Let $R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$.

If $(g_i \mapsto x_i \text{ for all } i \in I \subset \{1, ..., n\})$ extends to an isomorphism, then...

- **9** equal Poincaré series of $G_I := \langle g_i | i \in I \rangle \subset R_1$, $X_I := \langle x_i | i \in I \rangle \subset R_2$.
- **2** substituting x_i for g_i in $\mathcal{Q} \cap \langle g_i | i \in I \rangle \subset \mathcal{F}(g_1, ..., g_n)$ yields zero.

Let
$$R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$$
.

If $(g_i \mapsto x_i \text{ for all } i \in I \subset \{1, ..., n\})$ extends to an isomorphism, then...

- **9** equal Poincaré series of $G_I := \langle g_i | i \in I \rangle \subset R_1$, $X_I := \langle x_i | i \in I \rangle \subset R_2$.
- **2** substituting x_i for g_i in $\mathcal{Q} \cap \langle g_i | i \in I \rangle \subset \mathcal{F}(g_1, ..., g_n)$ yields zero.
- Ann(G_I) and Ann(X_I) have the same Poincaré series.

Let
$$R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$$
.

If $(g_i \mapsto x_i \text{ for all } i \in I \subset \{1, ..., n\})$ extends to an isomorphism, then...

9 equal Poincaré series of $G_I := \langle g_i | i \in I \rangle \subset R_1$, $X_I := \langle x_i | i \in I \rangle \subset R_2$.

- **2** substituting x_i for g_i in $\mathcal{Q} \cap \langle g_i | i \in I \rangle \subset \mathcal{F}(g_1, ..., g_n)$ yields zero.
- O Ann (G_I) and Ann (X_I) have the same Poincaré series.

Expl: G_1 extraspecial of order 3^{2+1} and exponent 3, $G_2 = Syl_3(U_3(8))$

For some $g_i \in H^2(G_1)$, (3) shows $H^*(G_1) \ncong H^*(G_2)$ (80 tests).

Let $R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$.

If $(g_i \mapsto x_i \text{ for all } i \in I \subset \{1, ..., n\})$ extends to an isomorphism, then...

9 equal Poincaré series of $G_I := \langle g_i | i \in I \rangle \subset R_1$, $X_I := \langle x_i | i \in I \rangle \subset R_2$.

- **2** substituting x_i for g_i in $\mathcal{Q} \cap \langle g_i | i \in I \rangle \subset \mathcal{F}(g_1, ..., g_n)$ yields zero.
- O Ann (G_I) and Ann (X_I) have the same Poincaré series.

Expl: G_1 extraspecial of order 3^{2+1} and exponent 3, $G_2 = Syl_3(U_3(8))$

For some $g_i \in H^2(G_1)$, (3) shows $H^*(G_1) \ncong H^*(G_2)$ (80 tests). The naive approach studies $8^2 \cdot 80^4 \cdot 728^2 \cdot 19682 > 10^{19}$ choices.

Let
$$R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$$
.

If $(g_i \mapsto x_i \text{ for all } i \in I \subset \{1, ..., n\})$ extends to an isomorphism, then...

9 equal Poincaré series of $G_I := \langle g_i | i \in I \rangle \subset R_1$, $X_I := \langle x_i | i \in I \rangle \subset R_2$.

- **2** substituting x_i for g_i in $\mathcal{Q} \cap \langle g_i | i \in I \rangle \subset \mathcal{F}(g_1, ..., g_n)$ yields zero.
- O Ann (G_I) and Ann (X_I) have the same Poincaré series.

Expl: G_1 extraspecial of order 3^{2+1} and exponent 3, $G_2 = Syl_3(U_3(8))$

For some $g_i \in H^2(G_1)$, (3) shows $H^*(G_1) \ncong H^*(G_2)$ (80 tests). The naive approach studies $8^2 \cdot 80^4 \cdot 728^2 \cdot 19682 > 10^{19}$ choices.

Expl: $G_1 = \text{SmallGroup}(32, 27), G_2 = \text{SmallGroup}(64, 128)$

Naive approach: $7^3 \cdot 127^3 > 7 \cdot 10^8$ choices of generator images.

Let
$$R_1 \cong \mathcal{F}(g_1, ..., g_n)/\mathcal{Q}$$
.

If $(g_i \mapsto x_i \text{ for all } i \in I \subset \{1, ..., n\})$ extends to an isomorphism, then...

9 equal Poincaré series of $G_I := \langle g_i | i \in I \rangle \subset R_1$, $X_I := \langle x_i | i \in I \rangle \subset R_2$.

- **2** substituting x_i for g_i in $\mathcal{Q} \cap \langle g_i | i \in I \rangle \subset \mathcal{F}(g_1, ..., g_n)$ yields zero.
- O Ann (G_I) and Ann (X_I) have the same Poincaré series.

Expl: G_1 extraspecial of order 3^{2+1} and exponent 3, $G_2 = Syl_3(U_3(8))$

For some $g_i \in H^2(G_1)$, (3) shows $H^*(G_1) \ncong H^*(G_2)$ (80 tests). The naive approach studies $8^2 \cdot 80^4 \cdot 728^2 \cdot 19682 > 10^{19}$ choices.

Expl: $G_1 = \text{SmallGroup}(32, 27)$, $G_2 = \text{SmallGroup}(64, 128)$

Naive approach: $7^3 \cdot 127^3 > 7 \cdot 10^8$ choices of generator images. After applying the partial tests on increasing subsets of generators, only 176 choices remain. In fact, $H^*(G_1) \ncong H^*(G_2)$.

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; in applications: \mathcal{A} basic algebra.
- $\langle g_1,...,g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module.

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; in applications: \mathcal{A} basic algebra.
- $\langle g_1,...,g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module.
- Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomial" in \mathcal{P} , \mathcal{A} , M.

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; in applications: \mathcal{A} basic algebra.
- $\langle g_1,...,g_k \rangle = M \subset \mathcal{A}^r$ right \mathcal{A} module.
- Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomial" in \mathcal{P} , \mathcal{A} , M.
- NF(f; G) $\in A^r$ for $f \in A^r$, $G \subset M$ (termination?).

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; in applications: \mathcal{A} basic algebra.
- $\langle g_1,...,g_k
 angle = M \subset \mathcal{A}^r$ right \mathcal{A} module.
- Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomial" in \mathcal{P} , \mathcal{A} , M.
- $NF(f; G) \in A^r$ for $f \in A^r$, $G \subset M$ (termination?).

Standard bases and Buchberger algorithm

- $G \subset M$ standard basis \iff all $p \in M$ are reducible mod G.
- Standard bases are generally not minimal generating sets.

- \mathcal{P} path algebra over field K
- $\psi : \mathcal{P} \twoheadrightarrow \mathcal{A}$; in applications: \mathcal{A} basic algebra.
- $\langle g_1,...,g_k
 angle = M \subset \mathcal{A}^r$ right \mathcal{A} module.
- Monomial ordering on $\mathcal{P} \rightsquigarrow$ "leading monomial" in \mathcal{P} , \mathcal{A} , M.
- NF(f; G) $\in A^r$ for $f \in A^r$, $G \subset M$ (termination?).

Standard bases and Buchberger algorithm

- $G \subset M$ standard basis \iff all $p \in M$ are reducible mod G.
- Standard bases are generally not minimal generating sets.
- Obtain standard basis from arbitrary generating set by repeated addition of S-polynomials, and interreduction.
- S-polynomials reducing to zero are a waste of time.

• By construction, S-polynomials belong to Rad(M).

- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.

- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.
- **Thm:** If a negative degree ordering is used, the non-radical elements of a heady standard basis form a minimal generating set of *M*.

- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.
- **Thm:** If a negative degree ordering is used, the non-radical elements of a heady standard basis form a minimal generating set of *M*.

Signed standard bases: [K 2014] inspired by Faugère's F₅ [2002]

Evaluation ev : $\bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P} \twoheadrightarrow M$, ev $(\mathfrak{e}_{i}) = g_{i}$ • If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with ev $(\tilde{f}) = f \in M$: Lt (\tilde{f}) is an F₅ signature of f.

- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.
- **Thm:** If a negative degree ordering is used, the non-radical elements of a heady standard basis form a minimal generating set of *M*.

Evaluation ev :
$$\bigoplus_{i=1}^{k} \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$$
, ev $(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.

- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.
- **Thm:** If a negative degree ordering is used, the non-radical elements of a heady standard basis form a minimal generating set of *M*.

Evaluation ev :
$$\bigoplus_{i=1}^{k} \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$$
, $ev(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.
- Disregard all S-polynomials with a signature in lead(ker(ev)).

- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.
- **Thm:** If a negative degree ordering is used, the non-radical elements of a heady standard basis form a minimal generating set of *M*.

Evaluation ev :
$$\bigoplus_{i=1}^{k} \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$$
, $ev(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.
- Disregard all S-polynomials with a signature in lead(ker(ev)).
 - Quotient relations of A yield info on lead(ker(ev)).
 - Any remaining zero reduction yields more info! [Arri, Perry 2011]

- By construction, S-polynomials belong to Rad(M).
- $NF_h(f; G)$: Only consider radicality preserving reductions.
- **Thm:** If a negative degree ordering is used, the non-radical elements of a heady standard basis form a minimal generating set of *M*.

Evaluation ev :
$$\bigoplus_{i=1}^{k} \mathfrak{e}_i \mathcal{P} \twoheadrightarrow M$$
, $ev(\mathfrak{e}_i) = g_i$

- If $\tilde{f} \in \bigoplus_{i=1}^{k} \mathfrak{e}_{i} \mathcal{P}$ with $ev(\tilde{f}) = f \in M$: $Lt(\tilde{f})$ is an F_{5} signature of f.
- Let $NF_{\sigma}(f; G)$ be obtained from signature preserving reductions.
- Disregard all S-polynomials with a signature in lead(ker(ev)).
 - Quotient relations of A yield info on lead(ker(ev)).
 - Any remaining zero reduction yields more info! [Arri, Perry 2011]
- **Thm:** If a negative degree ordering is used, a *signed standard basis* allow to read off bases for Radⁱ(M).