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Motivation

G finite group, p prime dividing |G |. H∗(G ) := H∗(G ;Fp)

Arises in topology, number theory, representation theory, ...

Is a f.p. graded commutative Fp-algebra determined by G .

Contravariant functor. U ≤ G  restriction resGU : H∗(G )→ H∗(U).

Carlson [2005], proved for p = 2, conjectured for p > 2

For any c ∈ N, there are only finitely many graded isomorphism types for
the modular cohomology rings of finite p-groups of coclass c . How many?

Conjecture of Eick and Leedham-Green [2008]

In each “coclass family” of finite p-groups, all but finitely many groups
have isomorphic modular cohomology rings. How many exceptions?

Do computer experiments!

• How to compute H∗(G )? • How to test H∗(G1) ∼= H∗(G2)?
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Computational results Minimal ring presentations of cohomology rings

Some cohomology rings that we can compute

Optional package for SageMath (K, Green)

http://users.minet.uni-jena.de/cohomology/documentation/

Results: http://users.minet.uni-jena.de/~king/cohomology

All groups of orders 64 and 128; all but 6 groups of order 243

Carlson needed ∼ 8 months comp. time [1997-2001] for order 64.
We need ∼ 30 minutes for order 64, about 2 months for order 128.

Interesting non prime power groups

We got the modular cohomology for different primes of (among others)

HS , McL, Janko groups (not J4), Mathieu groups (not M24)

[K, Green, Ellis 2011]: H∗(Co3;F2) is Cohen-Macaulay.

Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.
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Computational results Working with the cohomology rings

Further available data

The SageMath package can also compute...

Poincaré series, depth, a-invariants, ... of H∗(G )

Massey products

Via induced homomorphisms:

nilradical
essential ideals.
Syl2 (U3(4)), Syl2 (U3(4))× C2 are the only known examples for which
the essential ideal does not square to zero.

Hambleton [2013]: Is H2(G ;F2) detected by metabelian groups?

Computational data suggest: H∗(G ;Fp) (any degree, any prime p) is
detected by metabelian groups.

Green [2015]: There is a non-metabelian group G of order 316 that is
p-centric (hence, has essential classes).
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Computational results Isomorphism classes of cohomology rings

Isomorphism classes, sorted by group order

Eick, K [2015], paper accepted, software not published yet

We provide a complete classification of H∗(G ) up to isomorphisms of
graded Fp-algebras, for p-groups G , |G | ≤ 81.

|G | #groups #rings cum. #groups cum. #rings

2 1 1 1 1
4 2 2 3 3
8 5 5 8 7

16 14 14 22 18
32 51 48 73 55
64 267 239 340 260

3 1 1 1 1
9 2 2 3 2

27 5 5 8 5
81 15 13 23 14

Work in progress: |G | ≤ 128.
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Algorithms in Group Cohomology

Computational approaches

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

Lyndon–Hochschild–Serre: extrasp. 2–groups (Quillen (1971])

Eilenberg–Moore: groups of order 32 (Rusin [1989])

But not general enough, difficult to implement and to interprete.

Via approximation τnH∗(G ) of H∗(G ) à la [Carlson 2001]

Compute Hd(G ) for d ≤ n, products out to degree n, and relations.

τnH∗(G ) is presented by generators and relations of H∗(G )
of degree at most n.

If n is large enough: H∗(G ) ∼= τnH∗(G ).
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Compute Hd(G ) for d ≤ n, products out to degree n, and relations.

τnH∗(G ) is presented by generators and relations of H∗(G )
of degree at most n.

If n is large enough: H∗(G ) ∼= τnH∗(G ).

Simon King (Jena/Cologne) Classification of Modular Group Cohomology Osnabrück, Oct 01, 2015 6 / 14



Algorithms in Group Cohomology

Computational approaches

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

Lyndon–Hochschild–Serre: extrasp. 2–groups (Quillen (1971])

Eilenberg–Moore: groups of order 32 (Rusin [1989])

But not general enough,

difficult to implement and to interprete.

Via approximation τnH∗(G ) of H∗(G ) à la [Carlson 2001]
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Compute Hd(G ) for d ≤ n, products out to degree n, and relations.

τnH∗(G ) is presented by generators and relations of H∗(G )
of degree at most n.

If n is large enough: H∗(G ) ∼= τnH∗(G ).

Simon King (Jena/Cologne) Classification of Modular Group Cohomology Osnabrück, Oct 01, 2015 6 / 14



Algorithms in Group Cohomology

Computational approaches

Topology

Construct Classifying spaces. — Tailor made.

Spectral Sequences

Lyndon–Hochschild–Serre: extrasp. 2–groups (Quillen (1971])

Eilenberg–Moore: groups of order 32 (Rusin [1989])

But not general enough, difficult to implement and to interprete.

Via approximation τnH∗(G ) of H∗(G ) à la [Carlson 2001]
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Algorithms in Group Cohomology Computing Hd (G)

Computing Hd (G )

For G a prime power group: Via minimal projective resolutions.

E. Green, Solberg, Zacharia [2001]: Use non-commutative standard
bases to compute kernels, and then minimise the generating set.

Carlson [1997-2001]: Use linear algebra.

D. Green [2001]: Heady standard bases computing a minimal
generating set of the kernel in a single step. Used in SageMath.

K [2014]: Non-commutative F5 algorithm finds Loewy layers in one
step and avoids redundant computations. Soon in SageMath.

For G not a prime power group: Stable elements [Cartan–Eilenberg 1956]

If Sylp(G ) 3 S ≤ U ≤ G , then resGU : H∗(G ) ↪→ H∗(U).

The sub-algebra is determined by stability conditions, corresponding
to double cosets U \ G/U.

Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G
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Algorithms in Group Cohomology A tower of subgroups for Co3

A tower of subgroups for Co3

Why should one use a subgroup tower?

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.

S = U0 ≤ U1 = NG ( Z2(S)︸ ︷︷ ︸
∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4

|Ui−1 \ Ui/Ui−1| 2 3 3 7
Discarding trivial double cosets, only 11 stability conditions remain.

Theorem [K, Green, Ellis 2011]

H∗(Co3;F2) is Cohen–Macaulay, presentable in degree 33 with
generators up to degree 15.

nilrad (H∗(Co3;F2)) = 0.

H∗(Co3;F2) is detected on max. elementary abelian 2–subgroups.
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Algorithms in Group Cohomology Completeness criteria

The completeness criteria we are using

In τnH∗(G ), find parameters for H∗(G ) on which to perform tests.

n needs to be “large enough” wrt. parameter degrees.

Benson [2004]

Dickson invariants  filter regular HSOP, maxdeg ∼ prkp(G).
Expl Syl2(Co3): Degrees 8, 12, 14, 15; detect completeness in degree 46.

Green, K [2011] (modified Benson test)

|G | = pn: Dickson invariants  f.r. HSOP X = {x1, ..., xr}, maxdeg
∼ prkp(G)−rk(Z(G)). Expl: Degrees 8, 4, 6, 7; detects in degree 22.

General G : Techniques to get smaller HSOP from given HSOP.

Find d ,m: ∃ finite field extension k/Fp: H∗(G ; k) has f.r. HSOP
X̃ = {x1, ..., xr−m, x̃1, ..., x̃m} and |x̃i | = d

Use X for test, X̃ for bound. Expl: Degrees 8, 4, 2, 2; detects in degree 14.
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Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G ) be so that H∗(G ) is finite over 〈〈X 〉〉.

E.g., X a subset of a generating set  rather small degrees.

Easy to use: Only the generating degree of τnH∗(G ) as a
〈〈X 〉〉-module needs to be computed.

Usually at least as good as the modified Benson test.

K [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G ) in terms of the generating
degree of H∗(U) as a τnH∗(G )-module.
Very useful: Stability conditions only in lower degrees. Expl: Sz(8)

2 Completeness criterion in terms of

parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Poincaré series of τnH∗(G ).
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Finding graded algebra isomorphisms Finitary algebras

Finding graded algebra isomorphisms [Eick, K 2015]

Setting: “finitary algebras”

Hypothesis: k finite field, R1,R2 graded associative unital k-algebras,
finitely generated in positive degrees.

Thus, R
(d)
i is a finite set for all d .

Also, we can compute in nilpotent quotients R
(>0)
i /

(
R

(>0)
i

)k
.

For cohomology rings, we can even use Gröbner bases.

Assume nilradical, Poincaré series equal. Very naive isomorphism test:

Let {g1, ..., gn} be a homogeneous generating set for R1.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

ψ(gi ) = xi extends to a graded isomorphism ψ : R1 → R2.

Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1

∼= R2.
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Assume nilradical, Poincaré series equal. Very naive isomorphism test:

Let {g1, ..., gn} be a homogeneous generating set for R1.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

ψ(gi ) = xi extends to a graded isomorphism ψ : R1 → R2.

Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1

∼= R2.

Simon King (Jena/Cologne) Classification of Modular Group Cohomology Osnabrück, Oct 01, 2015 11 / 14



Finding graded algebra isomorphisms Finitary algebras

Finding graded algebra isomorphisms [Eick, K 2015]

Setting: “finitary algebras”

Hypothesis: k finite field, R1,R2 graded associative unital k-algebras,
finitely generated in positive degrees.

Thus, R
(d)
i is a finite set for all d .

Also, we can compute in nilpotent quotients R
(>0)
i /

(
R

(>0)
i

)k
.

For cohomology rings, we can even use Gröbner bases.
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Finding graded algebra isomorphisms Partial isomorphism tests

Detecting non-extendible partial assignments

Let R1
∼= F(g1, ..., gn)/Q.

If (gi 7→ xi for all i ∈ I ⊂ {1, ..., n}) extends to an isomorphism, then...

1 equal Poincaré series of GI := 〈gi |i ∈ I 〉 ⊂ R1, XI := 〈xi |i ∈ I 〉 ⊂ R2.

2 substituting xi for gi in Q∩ 〈gi |i ∈ I 〉 ⊂ F(g1, ..., gn) yields zero.

3 Ann(GI ) and Ann(XI ) have the same Poincaré series.

Expl: G1 extraspecial of order 32+1 and exponent 3, G2 = Syl3(U3(8))

For some gi ∈ H2(G1), (3) shows H∗(G1) 6∼= H∗(G2) (80 tests).
The naive approach studies 82 · 804 · 7282 · 19682 > 1019 choices.

Expl: G1 = SmallGroup(32, 27), G2 = SmallGroup(64, 128)

Naive approach: 73 · 1273 > 7 · 108 choices of generator images.
After applying the partial tests on increasing subsets of generators, only
176 choices remain. In fact, H∗(G1) 6∼= H∗(G2).
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1 equal Poincaré series of GI := 〈gi |i ∈ I 〉 ⊂ R1, XI := 〈xi |i ∈ I 〉 ⊂ R2.

2 substituting xi for gi in Q∩ 〈gi |i ∈ I 〉 ⊂ F(g1, ..., gn) yields zero.

3 Ann(GI ) and Ann(XI ) have the same Poincaré series.
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A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

P path algebra over field K

ψ : P � A; in applications: A basic algebra.

〈g1, ..., gk〉 = M ⊂ Ar right A module.

Monomial ordering on P  “leading monomial” in P, A, M.

NF(f ; G ) ∈ Ar for f ∈ Ar , G ⊂ M (termination?).

Standard bases and Buchberger algorithm

G ⊂ M standard basis ⇐⇒ all p ∈ M are reducible mod G .

Standard bases are generally not minimal generating sets.

Obtain standard basis from arbitrary generating set by repeated
addition of S-polynomials, and interreduction.

S-polynomials reducing to zero are a waste of time.
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G ⊂ M standard basis ⇐⇒ all p ∈ M are reducible mod G .

Standard bases are generally not minimal generating sets.

Obtain standard basis from arbitrary generating set by repeated
addition of S-polynomials, and interreduction.

S-polynomials reducing to zero are a waste of time.
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“Heady” standard bases [Green 2001]

By construction, S-polynomials belong to Rad(M).

NFh(f ; G ): Only consider radicality preserving reductions.

Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.

Signed standard bases: [K 2014] inspired by Faugère’s F5 [2002]

Evaluation ev :
⊕k

i=1 eiP � M, ev(ei ) = gi

If f̃ ∈
⊕k

i=1 eiP with ev(f̃ ) = f ∈ M: Lt(f̃ ) is an F5 signature of f .

Let NFσ(f ; G ) be obtained from signature preserving reductions.

Disregard all S-polynomials with a signature in lead(ker(ev)).

Quotient relations of A yield info on lead(ker(ev)).
Any remaining zero reduction yields more info! [Arri, Perry 2011]

Thm: If a negative degree ordering is used, a signed standard basis
allow to read off bases for Radi (M).
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