The functional equation
 for L-functions of hyperelliptic curves
 Jahrestagung SPP 1489, Osnabrück

Michel Börner

Ulm University

September 30, 2015

Setup

Y smooth projective curve over \mathbb{Q} (number field)

Setup

Y smooth projective curve over \mathbb{Q} (number field)
for fixed $p \in \mathbb{Q}$ and a model \mathcal{Y} of Y define:
$\bar{Y} \quad$ special fiber, $\bar{Y}=\mathcal{Y} \otimes_{\mathbb{Z}_{p}} \mathbb{F}_{p}$

Setup

$Y \quad$ smooth projective curve over Q (number field)
for fixed $p \in \mathbb{Q}$ and a model \mathcal{Y} of Y define:
$\bar{Y} \quad$ special fiber, $\bar{Y}=\mathcal{Y} \otimes \mathbb{Z}_{p} \mathbb{F}_{p}$
$L(Y, s) \quad L$ series, $L(Y, s)=\sum_{n \in \mathbb{N}} \frac{a_{n}}{n^{s}}=\prod_{p} L_{p}(Y, s)$

Setup

$Y \quad$ smooth projective curve over Q (number field)
for fixed $p \in \mathbb{Q}$ and a model \mathcal{Y} of Y define:
$\bar{Y} \quad$ special fiber, $\bar{Y}=\mathcal{Y} \otimes \mathbb{Z}_{p} \mathbb{F}_{p}$
$L(Y, s) \quad L$ series, $L(Y, s)=\sum_{n \in \mathbb{N}} \frac{a_{n}}{n^{s}}=\prod_{p} L_{p}(Y, s)$
$g \quad$ genus $g=g(Y)$
$N \quad$ conductor, $N=\prod_{p} p^{f_{p}}$

Functional Equation

Conjectured functional equation

$$
\Lambda(Y, s)= \pm \Lambda(Y, 2-s)
$$

(FEq)

where $\Lambda(Y, s)=\sqrt{N}^{s} \cdot(2 \pi)^{-g^{s}} \cdot \Gamma(s)^{g} \cdot L(Y, s)$
For elliptic curves / Q this is the modularity theorem (Wiles)

Functional Equation

Conjectured functional equation

$$
\Lambda(Y, s)= \pm \Lambda(Y, 2-s)
$$

(FEq)
where $\Lambda(Y, s)=\sqrt{N}^{s} \cdot(2 \pi)^{-g^{s}} \cdot \Gamma(s)^{g} \cdot L(Y, s)$
For elliptic curves / Q this is the modularity theorem (Wiles)
Using Dokchitser package in sage [D04]

- (FEq) may be verified numerically (to a high probability) using all $a_{n} \leq M \sim \sqrt{N}$.

Functional Equation

Conjectured functional equation

$$
\Lambda(Y, s)= \pm \Lambda(Y, 2-s)
$$

(FEq)
where $\Lambda(Y, s)=\sqrt{N}^{s} \cdot(2 \pi)^{-g s} \cdot \Gamma(s)^{g} \cdot L(Y, s)$
For elliptic curves / \mathbb{Q} this is the modularity theorem (Wiles)
Using Dokchitser package in sage [D04]

- (FEq) may be verified numerically (to a high probability) using all $a_{n} \leq M \sim \sqrt{N}$.
- $\sum_{n} \frac{a_{n}}{n^{s}}=\prod_{p} L_{p}(Y, s) \rightsquigarrow$ need sufficiently many local factors L_{p}

Good and bad primes

Good, bad and semistable reduction at a prime

- good reduction: \exists model \mathcal{Y} of Y with \bar{Y} smooth

Good and bad primes

Good, bad and semistable reduction at a prime

- good reduction: \exists model \mathcal{Y} of Y with \bar{Y} smooth
- bad reduction: no such \mathcal{Y} exists

Good and bad primes

Good, bad and semistable reduction at a prime

- good reduction: \exists model \mathcal{Y} of Y with \bar{Y} smooth
- bad reduction: no such \mathcal{Y} exists
- semistable reduction: \bar{Y} has at most ordinary double points

Good and bad primes

Good, bad and semistable reduction at a prime

- good reduction: \exists model \mathcal{Y} of Y with \bar{Y} smooth
- bad reduction: no such \mathcal{Y} exists
- semistable reduction: \bar{Y} has at most ordinary double points

Good p :

- \bar{Y} is curve given by equation $\bmod p$

Good and bad primes

Good, bad and semistable reduction at a prime

- good reduction: \exists model \mathcal{Y} of Y with \bar{Y} smooth
- bad reduction: no such \mathcal{Y} exists
- semistable reduction: \bar{Y} has at most ordinary double points

Good p :

- \bar{Y} is curve given by equation $\bmod p$
- $L_{p}(Y, s)^{-1}=$ numerator of zeta fctn. of $\bar{Y}=P\left(\bar{Y}, T=p^{-s}\right)$

Good and bad primes

Good, bad and semistable reduction at a prime

- good reduction: \exists model \mathcal{Y} of Y with \bar{Y} smooth
- bad reduction: no such \mathcal{Y} exists
- semistable reduction: \bar{Y} has at most ordinary double points

Good p :

- \bar{Y} is curve given by equation $\bmod p$
- $L_{p}(Y, s)^{-1}=$ numerator of zeta fctn. of $\bar{Y}=P\left(\bar{Y}, T=p^{-s}\right)$
- $P(\bar{Y}, T)=1+c_{1} T+\ldots+c_{2 g} T^{2 g} \quad$ (Weil conjectures)

Good and bad primes

Good, bad and semistable reduction at a prime

- good reduction: \exists model \mathcal{Y} of Y with \bar{Y} smooth
- bad reduction: no such \mathcal{Y} exists
- semistable reduction: \bar{Y} has at most ordinary double points

Good p :

- \bar{Y} is curve given by equation $\bmod p$
- $L_{p}(Y, s)^{-1}=$ numerator of zeta fctn. of $\bar{Y}=P\left(\bar{Y}, T=p^{-s}\right)$
- $P(\bar{Y}, T)=1+c_{1} T+\ldots+c_{2 g} T^{2 g} \quad$ (Weil conjectures)
- c_{i} : point counting on \bar{Y}

Good and bad primes

Good, bad and semistable reduction at a prime

- good reduction: \exists model \mathcal{Y} of Y with \bar{Y} smooth
- bad reduction: no such \mathcal{Y} exists
- semistable reduction: \bar{Y} has at most ordinary double points

Good p :

- \bar{Y} is curve given by equation $\bmod p$
- $L_{p}(Y, s)^{-1}=$ numerator of zeta fctn. of $\bar{Y}=P\left(\bar{Y}, T=p^{-s}\right)$
- $P(\bar{Y}, T)=1+c_{1} T+\ldots+c_{2 g} T^{2 g} \quad$ (Weil conjectures)
- c_{i} : point counting on \bar{Y}
- $f_{p}=0 \quad \rightsquigarrow$ no contribution to conductor N

Good and bad primes ctd.

Bad p :

- L_{p}, f_{p} depend on Galois representation on $H_{\mathrm{et}}^{1}\left(Y_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}\right)$

Good and bad primes ctd.

Bad p :

- L_{p}, f_{p} depend on Galois representation on $H_{\mathrm{et}}^{1}\left(Y_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}\right)$
- First compute semistable reduction of Y at p

Fact (Deligne-Mumford):
Y has semistable reduction over some finite extension of Q_{p}

Good and bad primes ctd.

Bad p :

- L_{p}, f_{p} depend on Galois representation on $H_{\mathrm{et}}^{1}\left(Y_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}\right)$
- First compute semistable reduction of Y at p

Fact (Deligne-Mumford):

Y has semistable reduction over some finite extension of Q_{p}

- Algorithm for all bad L_{p}, f_{p} for certain types of curves using methods in [BW15]

Good and bad primes ctd.

Bad p :

- L_{p}, f_{p} depend on Galois representation on $H_{\mathrm{et}}^{1}\left(Y_{\overline{\mathrm{Q}}}, \mathrm{Q}_{\ell}\right)$
- First compute semistable reduction of Y at p

Fact (Deligne-Mumford):

Y has semistable reduction over some finite extension of Q_{p}

- Algorithm for all bad L_{p}, f_{p} for certain types of curves using methods in [BW15]

Next: Class of hyperelliptic curves over \mathbb{Q} with semistable reduction everywhere

Hyperelliptic curves with semistable red. at all p

Hyperelliptic setup ($p \neq 2$ case)

$g, h \in \mathbb{Z}_{p}[x], g$ monic, $\operatorname{deg} g=2 g(Y)+1, \operatorname{deg} h \leq g(Y), \operatorname{gcd}\left(f, f^{\prime}\right)=1$

$$
\begin{aligned}
Y: y^{2}+h(x) y & =g(x) \\
\Longleftrightarrow \quad y^{2} & =f(x)=4 g(x)+h(x)^{2}
\end{aligned}
$$

Hyperelliptic curves with semistable red. at all p

Hyperelliptic setup ($p \neq 2$ case)

$g, h \in \mathbb{Z}_{p}[x], g$ monic, $\operatorname{deg} g=2 g(Y)+1, \operatorname{deg} h \leq g(Y), \operatorname{gcd}\left(f, f^{\prime}\right)=1$

$$
\begin{array}{rlrl}
Y: & y^{2}+h(x) y & =g(x) \\
\Longleftrightarrow \quad y^{2} & =f(x)=4 g(x)+h(x)^{2}
\end{array}
$$

Fact ($p \neq 2$ case)
Y has semistable reduction already over Q_{p}
$\Longleftrightarrow \bar{Y}: y^{2}=\bar{f}(x)=r^{2}(x) \cdot s(x)$
with $r, s \in \mathbb{F}_{p}[x]$ separable \& coprime

Hyperelliptic curves with semistable red. at all p

Hyperelliptic setup ($p \neq 2$ case)

$g, h \in \mathbb{Z}_{p}[x], g$ monic, $\operatorname{deg} g=2 g(Y)+1, \operatorname{deg} h \leq g(Y), \operatorname{gcd}\left(f, f^{\prime}\right)=1$

$$
\begin{array}{rlrl}
Y: & y^{2}+h(x) y & =g(x) \\
\Longleftrightarrow \quad y^{2} & =f(x)=4 g(x)+h(x)^{2}
\end{array}
$$

Fact ($p \neq 2$ case)

Y has semistable reduction already over Q_{p}

$$
\Longleftrightarrow \bar{Y}: y^{2}=\bar{f}(x)=r^{2}(x) \cdot s(x)
$$

with $r, s \in \mathbb{F}_{p}[x]$ separable \& coprime
$p=2:$ A little more work

Computations at bad primes $p \neq 2$

$$
\bar{Y}: y^{2}=r^{2}(x) \cdot s(x)
$$

Computations at bad primes $p \neq 2$

$$
\bar{Y}: y^{2}=r^{2}(x) \cdot s(x)
$$

Computations at bad primes $p \neq 2$

$$
\bar{Y}: y^{2}=r^{2}(x) \cdot s(x)
$$

Algorithm

Bad primes

- Exponent $f_{p}=\#$ loops $=\sum_{i} \operatorname{deg}\left(r_{i}\right)$

Algorithm

Bad primes

- Exponent $f_{p}=\#$ loops $=\sum_{i} \operatorname{deg}\left(r_{i}\right)$
- Nodes have split or non-split reduction and

$$
L_{p}\left(Y, T=p^{-s}\right)=\frac{L_{p}\left(\bar{Y}_{0}, T\right)}{\prod_{i}\left(1 \pm T^{d_{i}}\right)}
$$

with $d_{i}=\operatorname{deg}\left(r_{i}\right)$.

Algorithm

Bad primes

- Exponent $f_{p}=\#$ loops $=\sum_{i} \operatorname{deg}\left(r_{i}\right)$
- Nodes have split or non-split reduction and

$$
L_{p}\left(Y, T=p^{-s}\right)=\frac{L_{p}\left(\bar{Y}_{0}, T\right)}{\prod_{i}\left(1 \pm T^{d_{i}}\right)}
$$

with $d_{i}=\operatorname{deg}\left(r_{i}\right)$.

- $L_{p}\left(\bar{Y}_{0}, T\right)$: Just point counting on \bar{Y}_{0}

Algorithm

Bad primes

- Exponent $f_{p}=\#$ loops $=\sum_{i} \operatorname{deg}\left(r_{i}\right)$
- Nodes have split or non-split reduction and

$$
L_{p}\left(Y, T=p^{-s}\right)=\frac{L_{p}\left(\bar{Y}_{0}, T\right)}{\prod_{i}\left(1 \pm T^{d_{i}}\right)}
$$

with $d_{i}=\operatorname{deg}\left(r_{i}\right)$.

- $L_{p}\left(\bar{Y}_{0}, T\right)$: Just point counting on \bar{Y}_{0}

Point counting (good/bad p): Just for $p^{k} \leq M$ where $M \sim \sqrt{N}$

Example

$$
\begin{aligned}
& Y: y^{2}+h(x) y=g(x) \\
& g=x^{7}+x^{6}+2 x^{5}+2 x^{4}+2 x^{3}-1 \\
& h=-x^{3}+x^{2}+x+2
\end{aligned}
$$

Example

$$
\begin{aligned}
& Y: y^{2}+h(x) y=g(x) \quad \stackrel{p \neq 2}{\Longrightarrow} \quad \bar{Y}: \quad y^{2}=r^{2}(x) \cdot s(x) \\
& g=x^{7}+x^{6}+2 x^{5}+2 x^{4}+2 x^{3}-1 \\
& h=-x^{3}+x^{2}+x+2 \quad \text { bad } p: 2,3,11,37 \quad g(Y)=3
\end{aligned}
$$

Example

$$
\begin{aligned}
& Y: y^{2}+h(x) y=g(x) \quad \stackrel{p \neq 2}{\Longrightarrow} \quad \bar{Y}: \quad y^{2}=r^{2}(x) \cdot s(x) \\
& g=x^{7}+x^{6}+2 x^{5}+2 x^{4}+2 x^{3}-1 \\
& h=-x^{3}+x^{2}+x+2 \quad \text { bad } p: 2,3,11,37 \quad g(Y)=3
\end{aligned}
$$

$p=3:$

$$
\bar{Y}: \quad y^{2}=(x+1)^{2} \cdot\left(x^{2}+1\right)^{2} \cdot x
$$

Example

$$
\begin{aligned}
& Y: y^{2}+h(x) y=g(x) \quad \stackrel{p \neq 2}{\Longrightarrow} \quad \bar{Y}: \quad y^{2}=r^{2}(x) \cdot s(x) \\
& g=x^{7}+x^{6}+2 x^{5}+2 x^{4}+2 x^{3}-1 \\
& h=-x^{3}+x^{2}+x+2 \quad \text { bad } p: 2,3,11,37 \quad g(Y)=3
\end{aligned}
$$

$$
\begin{aligned}
p=3: \quad \bar{Y}: \quad y^{2} & =(x+1)^{2} \cdot\left(x^{2}+1\right)^{2} \cdot x \\
L_{3}(T)^{-1}=\frac{\prod_{i}\left(1 \pm T^{d_{i}}\right)}{L_{3}\left(\bar{Y}_{0}, T\right)} & =(1+T) \cdot\left(1-T^{2}\right) / 1 \\
f_{3} & =\operatorname{deg}(r)=3
\end{aligned}
$$

Example

$$
\begin{aligned}
& Y: y^{2}+h(x) y=g(x) \stackrel{p \neq 2}{\Longrightarrow} \quad \bar{Y}: \quad y^{2}=r^{2}(x) \cdot s(x) \\
& g=x^{7}+x^{6}+2 x^{5}+2 x^{4}+2 x^{3}-1 \\
& h=-x^{3}+x^{2}+x+2 \quad \text { bad } p: 2,3,11,37 \quad g(Y)=3
\end{aligned}
$$

$$
\begin{aligned}
p=3: \quad \bar{Y}: \quad y^{2} & =(x+1)^{2} \cdot\left(x^{2}+1\right)^{2} \cdot x \\
L_{3}(T)^{-1}=\frac{\prod_{i}\left(1 \pm T^{d_{i}}\right)}{L_{3}\left(\bar{Y}_{0}, T\right)} & =(1+T) \cdot\left(1-T^{2}\right) / 1 \\
f_{3} & =\operatorname{deg}(r)=3
\end{aligned}
$$

$p=11,37$: similar

Example

$$
\begin{aligned}
& Y: y^{2}+h(x) y=g(x) \stackrel{p \neq 2}{\Longrightarrow} \quad \bar{Y}: \quad y^{2}=r^{2}(x) \cdot s(x) \\
& g=x^{7}+x^{6}+2 x^{5}+2 x^{4}+2 x^{3}-1 \\
& h=-x^{3}+x^{2}+x+2 \quad \text { bad } p: 2,3,11,37 \quad g(Y)=3
\end{aligned}
$$

$$
\begin{aligned}
p=3: \quad \bar{Y}: \quad y^{2} & =(x+1)^{2} \cdot\left(x^{2}+1\right)^{2} \cdot x \\
L_{3}(T)^{-1}=\frac{\prod_{i}\left(1 \pm T^{d_{i}}\right)}{L_{3}\left(\bar{Y}_{0}, T\right)} & =(1+T) \cdot\left(1-T^{2}\right) / 1 \\
f_{3} & =\operatorname{deg}(r)=3
\end{aligned}
$$

Example ctd.

Other primes:

$$
\begin{array}{lr}
L_{2}^{-1}=\left(1-T^{2}\right) \cdot\left(1-T+2 T^{2}\right) & f_{2}=2 \\
L_{11}^{-1}=(1+T)^{2} \cdot\left(1-4 T+11 T^{2}\right) & f_{11}=2 \\
L_{37}^{-1}=(1-T) \cdot\left(1+\ldots+37^{2} T^{4}\right) & f_{37}=1
\end{array}
$$

Example ctd.

Other primes:

$$
\begin{array}{lr}
L_{2}^{-1}=\left(1-T^{2}\right) \cdot\left(1-T+2 T^{2}\right) & f_{2}=2 \\
L_{11}^{-1}=(1+T)^{2} \cdot\left(1-4 T+11 T^{2}\right) & f_{11}=2 \\
L_{37}^{-1}=(1-T) \cdot\left(1+\ldots+37^{2} T^{4}\right) & f_{37}=1
\end{array}
$$

Conductor N:

$$
N=2^{2} \cdot 3^{3} \cdot 11^{2} \cdot 37 \approx 500000
$$

Example ctd.

Other primes:

$$
\begin{array}{lr}
L_{2}^{-1}=\left(1-T^{2}\right) \cdot\left(1-T+2 T^{2}\right) & f_{2}=2 \\
L_{11}^{-1}=(1+T)^{2} \cdot\left(1-4 T+11 T^{2}\right) & f_{11}=2 \\
L_{37}^{-1}=(1-T) \cdot\left(1+\ldots+37^{2} T^{4}\right) & f_{37}=1
\end{array}
$$

Conductor N :

$$
N=2^{2} \cdot 3^{3} \cdot 11^{2} \cdot 37 \approx 500000
$$

Point counting:

\#points of $\bar{Y} / \mathbb{F}_{p^{k}}$ for $p^{k} \leq 15000$

Example ctd.

Other primes:

$$
\begin{array}{lr}
L_{2}^{-1}=\left(1-T^{2}\right) \cdot\left(1-T+2 T^{2}\right) & f_{2}=2 \\
L_{11}^{-1}=(1+T)^{2} \cdot\left(1-4 T+11 T^{2}\right) & f_{11}=2 \\
L_{37}^{-1}=(1-T) \cdot\left(1+\ldots+37^{2} T^{4}\right) & f_{37}=1
\end{array}
$$

Conductor N :

$$
N=2^{2} \cdot 3^{3} \cdot 11^{2} \cdot 37 \approx 500000
$$

Point counting:

\#points of $\bar{Y} / \mathbb{F}_{p^{k}}$ for $p^{k} \leq 15000$
Verification of ($\mathbf{F E q}$) via Dokchitser package in sage:

Overview and loose ends

Hyperelliptic curves

- All L_{p}, f_{p} computable for $g=2,3,4,5,6$ with reasonable effort Limitation: point count for good $p \sim \sqrt{N}=\prod_{\text {bad } p} p^{f_{p} / 2}$

Overview and loose ends

Hyperelliptic curves

- All L_{p}, f_{p} computable for $g=2,3,4,5,6$ with reasonable effort Limitation: point count for good $p \sim \sqrt{N}=\prod_{\text {bad } p} p^{f_{p} / 2}$
- (FEq) verified for hundreds of examples, N up to 10^{10} [B15]

Overview and loose ends

Hyperelliptic curves

- All L_{p}, f_{p} computable for $g=2,3,4,5,6$ with reasonable effort Limitation: point count for good $p \sim \sqrt{N}=\prod_{\text {bad } p} p^{f_{p} / 2}$
- (FEq) verified for hundreds of examples, N up to 10^{10} [B15]

Superelliptic curves

$$
Y: y^{n}=f(x)
$$

- Find algorithms for L_{p} and f_{p} for wider range of curves

Overview and loose ends

Hyperelliptic curves

- All L_{p}, f_{p} computable for $g=2,3,4,5,6$ with reasonable effort Limitation: point count for good $p \sim \sqrt{N}=\prod_{\operatorname{bad} p} p^{f_{p} / 2}$
- (FEq) verified for hundreds of examples, N up to 10^{10} [B15]

Superelliptic curves

$$
Y: y^{n}=f(x)
$$

- Find algorithms for L_{p} and f_{p} for wider range of curves
- Find (all) curves of certain class with small N (in preparation)

References

Thank you!

[BW15] Computing L-functions and semistable reduction of superelliptic curves, Irene Bouw and Stefan Wewers. To appear in Glasgow Math. J.
[BBW15] The functional equation for L-functions of hyperelliptic curves, Michel Börner, Irene I. Bouw, Stefan Wewers, arXiv:1504.00508
[B15] Examples of [BBW15], M.B., https://www.uni-ulm.de/index.php?id=64504
[D04] Computing special values of motivic L-functions, Tim Dokchitser, Exper. Math. 13, No. 2 (2004), 137-149

