Modular Techniques in Computational Algebraic Geometry

Janko Boehm
joint with W. Decker, C. Fieker, S. Laplagne, G. Pfister

Technische Universität Kaiserslautern
01 October 2015

Modular computations

- Many exact computations in computer algebra are carried out over \mathbb{Q} and extensions thereof.

Modular computations

- Many exact computations in computer algebra are carried out over \mathbb{Q} and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over \mathbb{Q}.

Modular computations

- Many exact computations in computer algebra are carried out over \mathbb{Q} and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over \mathbb{Q}.
- Fundamental approach:
(1) Compute modulo primes.

Modular computations

- Many exact computations in computer algebra are carried out over \mathbb{Q} and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over \mathbb{Q}.
- Fundamental approach:
(1) Compute modulo primes.
(2) Reconstruct result over \mathbb{Q}.

Modular computations

- Many exact computations in computer algebra are carried out over \mathbb{Q} and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over \mathbb{Q}.
- Fundamental approach:
(1) Compute modulo primes.
(2) Reconstruct result over \mathbb{Q}.
- Benefits:
- Avoid intermediate coefficient growth.

Modular computations

- Many exact computations in computer algebra are carried out over \mathbb{Q} and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over \mathbb{Q}.
- Fundamental approach:
(1) Compute modulo primes.
(2) Reconstruct result over \mathbb{Q}.
- Benefits:
- Avoid intermediate coefficient growth.
- Obtain parallel version of the algorithm.

Modular computations

- Many exact computations in computer algebra are carried out over \mathbb{Q} and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over \mathbb{Q}.
- Fundamental approach:
(1) Compute modulo primes.
(2) Reconstruct result over Q .
- Benefits:
- Avoid intermediate coefficient growth.
- Obtain parallel version of the algorithm.
- Goal:

General reconstruction scheme for algorithms in commutative algebra, algebraic geometry, number theory.

Outline

- Modular computations and rational reconstruction
- Bad primes

Outline

- Modular computations and rational reconstruction
- Bad primes
- Error tolerant lifting
- General reconstruction scheme

Outline

- Modular computations and rational reconstruction
- Bad primes
- Error tolerant lifting
- General reconstruction scheme
- Normalization
- Local-to-global algorithm for adjoint ideals
- Modular version and verification

Modular computations

Example

Compute

$$
\frac{3}{4}+\frac{1}{3}=\frac{13}{12}
$$

using modular techniques:

Modular computations

Example

Compute

$$
\frac{3}{4}+\frac{1}{3}=\frac{13}{12}
$$

using modular techniques:

$$
\begin{array}{rcccccccc}
& & \mathbb{Z} / 5 & \times & \mathbb{Z} / 7 & \times & \mathbb{Z} / 11 & \times & \mathbb{Z} / 101
\end{array} \cong \mathbb{Z} / 38885
$$

Modular computations

Example

Compute

$$
\frac{3}{4}+\frac{1}{3}=\frac{13}{12}
$$

using modular techniques:

		$\mathbb{Z} / 5$	\times	$\mathbb{Z} / 7$	\times	$\mathbb{Z} / 11$	\times	$\mathbb{Z} / 101$	\cong	$\mathbb{Z} / 38885$
$\frac{3}{4}$	\mapsto	$(\overline{2}$,	$\overline{6}$,	$\overline{9}$,	$\overline{26})$		
					+					
$\frac{1}{3}$	\mapsto	$(\overline{2}$,	$\overline{5}$,	$\overline{4}$,	$\overline{34})$		

Modular computations

Example

Compute

$$
\frac{3}{4}+\frac{1}{3}=\frac{13}{12}
$$

using modular techniques:

		$\mathbb{Z} / 5$	\times	$\mathbb{Z} / 7$	\times	$\mathbb{Z} / 11$	\times	Z/101	\cong	$\mathbb{Z} / 38885$
$\frac{3}{4}$	\mapsto	(2	,	$\overline{6}$,	$\overline{9}$		$\overline{26)}$		
					$+$					
$\frac{1}{3}$	\mapsto	($\overline{2}$,	$\overline{5}$,	$\overline{4}$,	34)		
					11					
		($\overline{4}$		$\overline{4}$,	$\overline{2}$,	$\overline{60}$)		

Modular computations

Example

Compute

$$
\frac{3}{4}+\frac{1}{3}=\frac{13}{12}
$$

using modular techniques:

$$
(\overline{4} \quad, \quad \overline{4} \quad, \quad \overline{2} \quad, \quad \overline{60}) \quad \mapsto \quad \overline{22684}
$$

Modular computations

Example

Compute

$$
\frac{3}{4}+\frac{1}{3}=\frac{13}{12}
$$

using modular techniques:

		$\mathbb{Z} / 5$	\times	$\mathbb{Z} / 7$	\times	$\mathbb{Z} / 11$	\times	$\mathbb{Z} / 101$	\cong	$\mathbb{Z} / 38885$
$\frac{3}{4}$	\mapsto	(2	,	$\overline{6}$		$\overline{9}$,	$\overline{26)}$		
					+					
$\frac{1}{3}$	\mapsto	(2	,	$\overline{5}$,	$\overline{4}$,	$34)$		
					11					
		($\overline{4}$		$\overline{4}$,	$\overline{2}$,	$\overline{60})$	\mapsto	$\overline{22684}$

How to obtain a rational number from $\overline{22684}$?

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map

$$
\begin{aligned}
&\left\{\frac{a}{b} \in \mathbb{Q}\left|\begin{array}{rr}
\operatorname{gcd}(a, b)=1 \\
\operatorname{gcd}(b, N)=1
\end{array} \quad\right| a|,|b| \leq \sqrt{(N-1) / 2}\}\right. \longrightarrow \\
& \mathbb{Z} / N \\
& \frac{a}{b} \longmapsto \\
& \bar{a} \cdot \bar{b}^{-1}
\end{aligned}
$$

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map

$$
\begin{aligned}
&\left\{\frac{a}{b} \in \mathbb{Q}\left|\begin{array}{rr}
\operatorname{gcd}(a, b)=1 \\
\operatorname{gcd}(b, N)=1
\end{array} \quad\right| a|,|b| \leq \sqrt{(N-1) / 2}\}\right. \longrightarrow \\
& \mathbb{Z} / N \\
& \frac{a}{b} \longmapsto \\
& \bar{a} \cdot \bar{b}^{-1}
\end{aligned}
$$

is injective.

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map

$$
\begin{aligned}
\left\{\frac{a}{b} \in \mathbb{Q} \left\lvert\, \begin{array}{rl}
\operatorname{gcd}(a, b)=1 \\
\operatorname{gcd}(b, N)=1
\end{array}\right.\right. & |a|,|b| \leq \sqrt{(N-1) / 2}\}
\end{aligned} \longrightarrow \quad \mathbb{Z} / N
$$

is injective. Efficient algorithm for preimage.

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map

$$
\begin{aligned}
\left\{\frac{a}{b} \in \mathbb{Q} \left\lvert\, \begin{array}{rr}
\operatorname{gcd}(a, b)=1 \\
\operatorname{gcd}(b, N)=1
\end{array}\right.\right. & |a|,|b| \leq \sqrt{(N-1) / 2}\}
\end{aligned} \longrightarrow \mathbb{Z} / N
$$

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example

$$
\left\{\frac{a}{b} \in \mathbb{Q}\left|\begin{array}{r}
\operatorname{gcd}(a, b)=1 \\
\operatorname{gcd}(b, 38885)=1
\end{array} \quad\right| a|,|b| \leq 139\} \quad \longrightarrow \quad \mathbb{Z} / 38885\right.
$$

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)
The Farey map

$$
\begin{aligned}
&\left\{\frac{a}{b} \in \mathbb{Q}\left|\begin{array}{c}
\operatorname{gcd}(a, b)=1 \\
\operatorname{gcd}(b, N)=1
\end{array} \quad\right| a|,|b| \leq \sqrt{(N-1) / 2}\}\right. \longrightarrow \\
& \longrightarrow \mathbb{Z} / N \\
& \frac{a}{b} \longmapsto \\
& \bar{a} \cdot \bar{b}^{-1}
\end{aligned}
$$

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example

$$
\left\{\begin{array}{r|rrc}
a & \begin{array}{r}
\operatorname{gcd}(a, b)=1 \\
\operatorname{gcd}(b, 38885)=1
\end{array} & |a|,|b| \leq 139\} & \longrightarrow \\
\frac{\mathbb{Z}}{b} / 38885 \\
& \longmapsto & \overline{22684}
\end{array}\right.
$$

Basic concept for modular computations

(1) Compute result over \mathbb{Z} / p_{i} for distinct primes p_{1}, \ldots, p_{r}.

Basic concept for modular computations

(1) Compute result over \mathbb{Z} / p_{i} for distinct primes p_{1}, \ldots, p_{r}.
(2) For $N=p_{1} \cdot \ldots \cdot p_{r}$ compute lift w.r.t Chinese remainder isomorphism

$$
\mathbb{Z} / N \cong \mathbb{Z} / p_{1} \times \ldots \times \mathbb{Z} / p_{r}
$$

Basic concept for modular computations

(1) Compute result over \mathbb{Z} / p_{i} for distinct primes p_{1}, \ldots, p_{r}.
(2) For $N=p_{1} \cdot \ldots \cdot p_{r}$ compute lift w.r.t Chinese remainder isomorphism

$$
\mathbb{Z} / N \cong \mathbb{Z} / p_{1} \times \ldots \times \mathbb{Z} / p_{r}
$$

(3) If exists, compute preimage w.r.t injective Farey map.

Basic concept for modular computations

(1) Compute result over \mathbb{Z} / p_{i} for distinct primes p_{1}, \ldots, p_{r}.
(2) For $N=p_{1} \cdot \ldots \cdot p_{r}$ compute lift w.r.t Chinese remainder isomorphism

$$
\mathbb{Z} / N \cong \mathbb{Z} / p_{1} \times \ldots \times \mathbb{Z} / p_{r}
$$

(3) If exists, compute preimage w.r.t injective Farey map.
(c) Verify correctness of lift.

Basic concept for modular computations

(1) Compute result over \mathbb{Z} / p_{i} for distinct primes p_{1}, \ldots, p_{r}.
(2) For $N=p_{1} \cdot \ldots \cdot p_{r}$ compute lift w.r.t Chinese remainder isomorphism

$$
\mathbb{Z} / N \cong \mathbb{Z} / p_{1} \times \ldots \times \mathbb{Z} / p_{r}
$$

(3) If exists, compute preimage w.r.t injective Farey map.
(9) Verify correctness of lift.

This will yield correct result, provided

- N is large enough s.t. the Q-result is in source of Farey map, and

Basic concept for modular computations

(1) Compute result over \mathbb{Z} / p_{i} for distinct primes p_{1}, \ldots, p_{r}.
(2) For $N=p_{1} \cdot \ldots \cdot p_{r}$ compute lift w.r.t Chinese remainder isomorphism

$$
\mathbb{Z} / N \cong \mathbb{Z} / p_{1} \times \ldots \times \mathbb{Z} / p_{r}
$$

(3) If exists, compute preimage w.r.t injective Farey map.
(9) Verify correctness of lift.

This will yield correct result, provided

- N is large enough s.t. the Q-result is in source of Farey map, and
- none of the p_{i} is bad.

Basic concept for modular computations

(1) Compute result over \mathbb{Z} / p_{i} for distinct primes p_{1}, \ldots, p_{r}.
(2) For $N=p_{1} \cdot \ldots \cdot p_{r}$ compute lift w.r.t Chinese remainder isomorphism

$$
\mathbb{Z} / N \cong \mathbb{Z} / p_{1} \times \ldots \times \mathbb{Z} / p_{r}
$$

(3) If exists, compute preimage w.r.t injective Farey map.
(c) Verify correctness of lift.

This will yield correct result, provided

- N is large enough s.t. the Q-result is in source of Farey map, and
- none of the p_{i} is bad.

Definition

A prime p is called bad if the result over \mathbb{Q} does not reduce modulo p to the result over \mathbb{Z} / p.

Bad primes in Gröbner basis computations

For $G \subset K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ and a monomial ordering $>$, let $L M(G)$ be the set of lead monomials of G.

Bad primes in Gröbner basis computations

For $G \subset K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ and a monomial ordering $>$, let $L M(G)$ be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$
G_{p}:=\bar{G} \subset \mathbb{Z} / p[X] .
$$

Bad primes in Gröbner basis computations

For $G \subset K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ and a monomial ordering $>$, let $\operatorname{LM}(G)$ be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$
G_{p}:=\bar{G} \subset \mathbb{Z} / p[X]
$$

Theorem (Arnold, 2003)
Suppose $F=\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{Z}[X]$ with f_{i} primitve,

Bad primes in Gröbner basis computations

For $G \subset K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ and a monomial ordering $>$, let $\operatorname{LM}(G)$ be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$
G_{p}:=\bar{G} \subset \mathbb{Z} / p[X] .
$$

Theorem (Arnold, 2003)

Suppose $F=\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{Z}[X]$ with f_{i} primitve, and

- G is the reduced Gröbner basis of $\langle F\rangle \subset \mathbb{Q}[X]$,

Bad primes in Gröbner basis computations

For $G \subset K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ and a monomial ordering $>$, let $\operatorname{LM}(G)$ be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$
G_{p}:=\bar{G} \subset \mathbb{Z} / p[X] .
$$

Theorem (Arnold, 2003)

Suppose $F=\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{Z}[X]$ with f_{i} primitve, and

- G is the reduced Gröbner basis of $\langle F\rangle \subset \mathbb{Q}[X]$,
- $G(p)$ is the reduced Gröbner basis of $\left\langle F_{p}\right\rangle$, and

Bad primes in Gröbner basis computations

For $G \subset K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ and a monomial ordering $>$, let $L M(G)$ be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$
G_{p}:=\bar{G} \subset \mathbb{Z} / p[X] .
$$

Theorem (Arnold, 2003)

Suppose $F=\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{Z}[X]$ with f_{i} primitve, and

- G is the reduced Gröbner basis of $\langle F\rangle \subset \mathbb{Q}[X]$,
- $G(p)$ is the reduced Gröbner basis of $\left\langle F_{p}\right\rangle$, and
- $G_{\mathbb{Z}}$ a minimal strong Gröbnerbasis of $\langle F\rangle \subset \mathbb{Z}[X]$.

Bad primes in Gröbner basis computations

For $G \subset K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ and a monomial ordering $>$, let $L M(G)$ be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$
G_{p}:=\bar{G} \subset \mathbb{Z} / p[X] .
$$

Theorem (Arnold, 2003)

Suppose $F=\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{Z}[X]$ with f_{i} primitve, and

- G is the reduced Gröbner basis of $\langle F\rangle \subset \mathbb{Q}[X]$,
- $G(p)$ is the reduced Gröbner basis of $\left\langle F_{p}\right\rangle$, and
- $G_{\mathbb{Z}}$ a minimal strong Gröbnerbasis of $\langle F\rangle \subset \mathbb{Z}[X]$. Then
p does not divide any lead coefficient in $G_{\mathbb{Z}} \Longleftrightarrow \mathrm{LM} G=\mathrm{LM} G(p)$

$$
\Longleftrightarrow G_{p}=G(p)
$$

Bad primes in Gröbner basis computations

For $G \subset K[X]=K\left[x_{1}, \ldots, x_{n}\right]$ and a monomial ordering $>$, let $L M(G)$ be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$
G_{p}:=\bar{G} \subset \mathbb{Z} / p[X] .
$$

Theorem (Arnold, 2003)

Suppose $F=\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{Z}[X]$ with f_{i} primitve, and

- G is the reduced Gröbner basis of $\langle F\rangle \subset \mathbb{Q}[X]$,
- $G(p)$ is the reduced Gröbner basis of $\left\langle F_{p}\right\rangle$, and
- $G_{\mathbb{Z}}$ a minimal strong Gröbnerbasis of $\langle F\rangle \subset \mathbb{Z}[X]$. Then
p does not divide any lead coefficient in $G_{\mathbb{Z}} \Longleftrightarrow \mathrm{LM} G=\mathrm{LM} G(p)$

$$
\Longleftrightarrow G_{p}=G(p)
$$

that is, p is not bad.

Bad primes in Gröbner basis computations

Example

Let

$$
f=x^{5}+y^{11}+x y^{9}+x^{3} y^{9} \in \mathbb{Z}[x, y] .
$$

Bad primes in Gröbner basis computations

Example

Let

$$
f=x^{5}+y^{11}+x y^{9}+x^{3} y^{9} \in \mathbb{Z}[x, y] .
$$

Then $G_{\mathbb{Z}}$ for

$$
\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

w.r.t $/ p$ is
$264627 y^{39}+\ldots$,
$12103947791971846719838321886393392913750065060875 x y^{8}-\ldots$, $40754032969602177507873137664624218564815033875 x^{4}+\ldots$.

Bad primes in Gröbner basis computations

Example

Let

$$
f=x^{5}+y^{11}+x y^{9}+x^{3} y^{9} \in \mathbb{Z}[x, y] .
$$

Then $G_{\mathbb{Z}}$ for

$$
\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

w.r.t $/ p$ is
$264627 y^{39}+\ldots$,
$12103947791971846719838321886393392913750065060875 x y^{8}-\ldots$, $40754032969602177507873137664624218564815033875 x^{4}+\ldots$.
and $\mathrm{LM} G=\operatorname{LM} G(p)$ for all primes p except

$$
p=3,5,11,809,65179,531264751,431051934846786628615463393 .
$$

Bad primes

Classification of bad primes:

- Type 1: Input modulo p not valid (no problem)

Bad primes

Classification of bad primes:

- Type 1: Input modulo p not valid (no problem)
- Type 2: Failure in the course of the algorithm (e.g. matrix not invertible modulo p, wastes computation time if happens)

Bad primes

Classification of bad primes:

- Type 1: Input modulo p not valid (no problem)
- Type 2: Failure in the course of the algorithm (e.g. matrix not invertible modulo p, wastes computation time if happens)
- Type 3: Computable invariant with known expected value (e.g. Hilbert polynomial) is wrong (have to do expensive test for each prime, although set of bad primes usually is finite)

Bad primes

Classification of bad primes:

- Type 1: Input modulo p not valid (no problem)
- Type 2: Failure in the course of the algorithm (e.g. matrix not invertible modulo p, wastes computation time if happens)
- Type 3: Computable invariant with known expected value (e.g. Hilbert polynomial) is wrong (have to do expensive test for each prime, although set of bad primes usually is finite)
- Type 4: Computable invariant with unknown expected value (e.g. lead ideal in Gröbner basis computations) is wrong (to detect by a majority vote, have to compute and store value of invariant for all modular results)

Bad primes

Classification of bad primes:

- Type 1: Input modulo p not valid (no problem)
- Type 2: Failure in the course of the algorithm (e.g. matrix not invertible modulo p, wastes computation time if happens)
- Type 3: Computable invariant with known expected value (e.g. Hilbert polynomial) is wrong (have to do expensive test for each prime, although set of bad primes usually is finite)
- Type 4: Computable invariant with unknown expected value (e.g. lead ideal in Gröbner basis computations) is wrong (to detect by a majority vote, have to compute and store value of invariant for all modular results)
- Type 5: otherwise.

Example of type 5 bad prime

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_{p}=(I \cap \mathbb{Z}[X])_{p}$.

Example

Consider the algorithm $I \mapsto \sqrt{I+\operatorname{Jac}(I)}$ for

$$
I=\left\langle x^{6}+y^{6}+7 x^{5} z+x^{3} y^{2} z-31 x^{4} z^{2}-224 x^{3} z^{3}+244 x^{2} z^{4}+1632 x z^{5}+576 z^{6}\right\rangle
$$

Example of type 5 bad prime

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_{p}=(I \cap \mathbb{Z}[X])_{p}$.

Example

Consider the algorithm $I \mapsto \sqrt{I+\operatorname{Jac}(I)}$ for

$$
I=\left\langle x^{6}+y^{6}+7 x^{5} z+x^{3} y^{2} z-31 x^{4} z^{2}-224 x^{3} z^{3}+244 x^{2} z^{4}+1632 x z^{5}+576 z^{6}\right\rangle
$$

Then w.r.t dp

$$
\mathrm{LM}(I)=\left\langle x^{6}\right\rangle=\operatorname{LM}\left(I_{5}\right)
$$

Example of type 5 bad prime

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_{p}=(I \cap \mathbb{Z}[X])_{p}$.

Example

Consider the algorithm $I \mapsto \sqrt{I+\operatorname{Jac}(I)}$ for

$$
I=\left\langle x^{6}+y^{6}+7 x^{5} z+x^{3} y^{2} z-31 x^{4} z^{2}-224 x^{3} z^{3}+244 x^{2} z^{4}+1632 x z^{5}+576 z^{6}\right\rangle
$$

Then w.r.t dp

$$
\mathrm{LM}(I)=\left\langle x^{6}\right\rangle=\operatorname{LM}\left(I_{5}\right)
$$

$$
\begin{aligned}
& U(0)=\sqrt{I+\operatorname{Jac}(I)}=\langle y, x-4 z\rangle \cap\langle y, x+6 z\rangle \\
& U(5)=\sqrt{I_{5}+\operatorname{Jac}\left(I_{5}\right)}=\left\langle y, x^{2}-z^{2}\right\rangle=\langle y, x-z\rangle \cap\langle y, x+z\rangle
\end{aligned}
$$

Example of type 5 bad prime

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_{p}=(I \cap \mathbb{Z}[X])_{p}$.

Example

Consider the algorithm $I \mapsto \sqrt{I+\operatorname{Jac}(I)}$ for

$$
I=\left\langle x^{6}+y^{6}+7 x^{5} z+x^{3} y^{2} z-31 x^{4} z^{2}-224 x^{3} z^{3}+244 x^{2} z^{4}+1632 x z^{5}+576 z^{6}\right\rangle
$$

Then w.r.t dp

$$
\mathrm{LM}(I)=\left\langle x^{6}\right\rangle=\operatorname{LM}\left(I_{5}\right)
$$

$$
\begin{gathered}
U(0)=\sqrt{I+\operatorname{Jac}(I)}=\langle y, x-4 z\rangle \cap\langle y, x+6 z\rangle \\
U(5)=\sqrt{I_{5}+\operatorname{Jac}\left(I_{5}\right)}=\left\langle y, x^{2}-z^{2}\right\rangle=\langle y, x-z\rangle \cap\langle y, x+z\rangle \\
U(0)_{5}=\left\langle y,(x+z)^{2}\right\rangle
\end{gathered}
$$

Example of type 5 bad prime

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_{p}=(I \cap \mathbb{Z}[X])_{p}$.

Example

Consider the algorithm $I \mapsto \sqrt{I+\operatorname{Jac}(I)}$ for

$$
I=\left\langle x^{6}+y^{6}+7 x^{5} z+x^{3} y^{2} z-31 x^{4} z^{2}-224 x^{3} z^{3}+244 x^{2} z^{4}+1632 x z^{5}+576 z^{6}\right\rangle
$$

Then w.r.t dp

$$
\mathrm{LM}(I)=\left\langle x^{6}\right\rangle=\operatorname{LM}\left(I_{5}\right)
$$

$$
\begin{gathered}
U(0)=\sqrt{I+\operatorname{Jac}(I)}=\langle y, x-4 z\rangle \cap\langle y, x+6 z\rangle \\
U(5)=\sqrt{I_{5}+\operatorname{Jac}\left(I_{5}\right)}=\left\langle y, x^{2}-z^{2}\right\rangle=\langle y, x-z\rangle \cap\langle y, x+z\rangle \\
U(0)_{5}=\left\langle y,(x+z)^{2}\right\rangle
\end{gathered}
$$

Hence

$$
U(0)_{5} \neq U(5)
$$

$$
\operatorname{LM}(U(0))=\left\langle y, x^{2}\right\rangle=\operatorname{LM}(U(5))
$$

Error tolerant reconstruction

Goal: Reconstruct $\frac{a}{b}$ from $\bar{r} \in \mathbb{Z} / N$ in the presence of bad primes.

Error tolerant reconstruction

Goal: Reconstruct $\frac{a}{b}$ from $\bar{r} \in \mathbb{Z} / N$ in the presence of bad primes. Idea: Find (x, y) with $\frac{x}{y}=\frac{a}{b}$ in the lattice

$$
\Lambda=\langle(N, 0),(r, 1)\rangle \subset \mathbb{Z}^{2}
$$

Error tolerant reconstruction

Goal: Reconstruct $\frac{a}{b}$ from $\bar{r} \in \mathbb{Z} / N$ in the presence of bad primes. Idea: Find (x, y) with $\frac{x}{y}=\frac{a}{b}$ in the lattice

$$
\Lambda=\langle(N, 0),(r, 1)\rangle \subset \mathbb{Z}^{2}
$$

Lemma (BDFP, 2015)
All $(x, y) \in \Lambda$ with $x^{2}+y^{2}<N$ are collinear.

Error tolerant reconstruction

Goal: Reconstruct $\frac{a}{b}$ from $\bar{r} \in \mathbb{Z} / N$ in the presence of bad primes. Idea: Find (x, y) with $\frac{x}{y}=\frac{a}{b}$ in the lattice

$$
\Lambda=\langle(N, 0),(r, 1)\rangle \subset \mathbb{Z}^{2}
$$

Lemma (BDFP, 2015)

All $(x, y) \in \Lambda$ with $x^{2}+y^{2}<N$ are collinear.

Proof.

Let $\lambda=(x, y), \mu=(c, d) \in \Lambda$ with $x^{2}+y^{2}, c^{2}+d^{2}<N$. Then $y \mu-d \lambda=(y c-x d, 0) \in \Lambda$, so $N \mid(y c-x d)$. By Cauchy-Schwarz $|y c-x d|<N$, hence $y c=x d$.

Error tolerant reconstruction

Goal: Reconstruct $\frac{a}{b}$ from $\bar{r} \in \mathbb{Z} / N$ in the presence of bad primes. Idea: Find (x, y) with $\frac{x}{y}=\frac{a}{b}$ in the lattice

$$
\Lambda=\langle(N, 0),(r, 1)\rangle \subset \mathbb{Z}^{2}
$$

Lemma (BDFP, 2015)

All $(x, y) \in \Lambda$ with $x^{2}+y^{2}<N$ are collinear.

Proof.

Let $\lambda=(x, y), \mu=(c, d) \in \Lambda$ with $x^{2}+y^{2}, c^{2}+d^{2}<N$. Then $y \mu-d \lambda=(y c-x d, 0) \in \Lambda$, so $N \mid(y c-x d)$. By Cauchy-Schwarz $|y c-x d|<N$, hence $y c=x d$.

Now suppose

$$
N=N^{\prime} \cdot M
$$

with $\operatorname{gcd}\left(N^{\prime}, M\right)=1$.

Error tolerant reconstruction

Think of N^{\prime} as the product of the good primes with correct result \bar{s}, and of M as the product of the bad primes with wrong result \bar{t}.

Error tolerant reconstruction

Think of N^{\prime} as the product of the good primes with correct result \bar{s}, and of M as the product of the bad primes with wrong result \bar{t}.

Theorem (BDFP, 2015)

If

$$
\bar{r} \mapsto(\bar{s}, \bar{t}) \quad \text { with respect to } \quad \mathbb{Z} / N \cong \mathbb{Z} / N^{\prime} \times \mathbb{Z} / M
$$

and

$$
\frac{a}{b} \equiv s \bmod N^{\prime}
$$

Error tolerant reconstruction

Think of N^{\prime} as the product of the good primes with correct result \bar{s}, and of M as the product of the bad primes with wrong result \bar{t}.

Theorem (BDFP, 2015)

If

$$
\bar{r} \mapsto(\bar{s}, \bar{t}) \quad \text { with respect to } \quad \mathbb{Z} / N \cong \mathbb{Z} / N^{\prime} \times \mathbb{Z} / M
$$

and

$$
\frac{a}{b} \equiv s \bmod N^{\prime}
$$

then $(a M, b M) \in \Lambda$.

Error tolerant reconstruction

Think of N^{\prime} as the product of the good primes with correct result \bar{s}, and of M as the product of the bad primes with wrong result \bar{t}.

Theorem (BDFP, 2015)

If

$$
\bar{r} \mapsto(\bar{s}, \bar{t}) \quad \text { with respect to } \quad \mathbb{Z} / N \cong \mathbb{Z} / N^{\prime} \times \mathbb{Z} / M
$$

and

$$
\frac{a}{b} \equiv s \bmod N^{\prime}
$$

then $(a M, b M) \in \Lambda$. So if

$$
\left(a^{2}+b^{2}\right) M<N^{\prime}
$$

then (by the lemma)

$$
\frac{x}{y}=\frac{a}{b} \quad \text { for all }(x, y) \in \Lambda \text { with }\left(x^{2}+y^{2}\right)<N
$$

and such vectors exist.

Error tolerant reconstruction

Think of N^{\prime} as the product of the good primes with correct result \bar{s}, and of M as the product of the bad primes with wrong result \bar{t}.

Theorem (BDFP, 2015)

If

$$
\bar{r} \mapsto(\bar{s}, \bar{t}) \quad \text { with respect to } \quad \mathbb{Z} / N \cong \mathbb{Z} / N^{\prime} \times \mathbb{Z} / M
$$

and

$$
\frac{a}{b} \equiv s \bmod N^{\prime}
$$

then $(a M, b M) \in \Lambda$. So if

$$
\left(a^{2}+b^{2}\right) M<N^{\prime}
$$

then (by the lemma)

$$
\frac{x}{y}=\frac{a}{b} \quad \text { for all }(x, y) \in \Lambda \text { with }\left(x^{2}+y^{2}\right)<N
$$

and such vectors exist. Moreover, if $\operatorname{gcd}(a, b)=1$ and (x, y) is a shortest vector $\neq 0$ in Λ, we also have $\operatorname{gcd}(x, y) \mid M$.

Error tolerant reconstruction via Gauss-Lagrange

Hence, if $N^{\prime} \gg M$, the Gauss-Lagrange-Algorithm for finding a shortest vector $(x, y) \in \Lambda$ gives $\frac{a}{b}$ independently of t, provided $x^{2}+y^{2}<N$.

Error tolerant reconstruction via Gauss-Lagrange

Hence, if $N^{\prime} \gg M$, the Gauss-Lagrange-Algorithm for finding a shortest vector $(x, y) \in \Lambda$ gives $\frac{a}{b}$ independently of t, provided $x^{2}+y^{2}<N$.

Algorithm (Error tolerant reconstruction)

Input: N and r.
Output: $\frac{a}{b}$ or false.
1: $\left(a_{0}, b_{0}\right):=(N, 0),\left(a_{1}, b_{1}\right):=(r, 1), i:=-1$
2. repeat

3: $\quad i=i+1$
4: $\quad\left(a_{i+2}, b_{i+2}\right)=\left(a_{i}, b_{i}\right)-\left\lfloor\frac{\left\langle\left(a_{i}, b_{i}\right),\left(a_{i+1}, b_{i+1}\right)\right\rangle}{\left\|\left(a_{i+1}, b_{i+1}\right)\right\|^{2}}\right\rceil\left(a_{i+1}, b_{i+1}\right)$
5: until $a_{i+2}^{2}+b_{i+2}^{2} \geq a_{i+1}^{2}+b_{i+1}^{2}$
6: if $a_{i+1}^{2}+b_{i+1}^{2}<N$ then
7: return $\frac{a_{i+1}}{b_{i+1}}$
8: else
9: return false

Reconstruction via Gauss-Lagrange

Example

We reconstruct $\frac{13}{12}$ from

$$
\overline{22684} \in \mathbb{Z} / 38885
$$

by determining a shortest vector in the lattice

$$
\langle(38885,0),(22684,1)\rangle \subset \mathbb{Z}^{2}
$$

via Gauss-Lagrange

Reconstruction via Gauss-Lagrange

Example

We reconstruct $\frac{13}{12}$ from

$\overline{22684} \in \mathbb{Z} / 38885$

by determining a shortest vector in the lattice

$$
\langle(38885,0),(22684,1)\rangle \subset \mathbb{Z}^{2}
$$

via Gauss-Lagrange

$$
\begin{aligned}
(38885,0) & =2 \cdot(22684,1)+(-6483,-2) \\
(22684,1) & =-3 \cdot(-6483,-2)+(3235,-5) \\
(-6483,-2) & =2 \cdot(3235,-5)+(-13,-12), \\
(3235,-5) & =-134 \cdot(-13,-12)+(1493,-1613) .
\end{aligned}
$$

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

$$
\begin{array}{ccccccccc}
\mathbb{Z} / 5 & \times & \mathbb{Z} / 7 & \times & \mathbb{Z} / 11 & \times & \mathbb{Z} / 101 & \cong & \mathbb{Z} / 38885 \\
(\overline{4} & , & \overline{4} & , & \overline{2} & , & \overline{60}) & \mapsto & \overline{22684}
\end{array}
$$

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

$\mathbb{Z} / 5$	\times	$\mathbb{Z} / 7$	\times	$\mathbb{Z} / 11$	\times	$\mathbb{Z} / 101$	\cong	$\mathbb{Z} / 38885$
$(\overline{4}$,	$\overline{4}$,	$\overline{2}$,	$\overline{60})$	\mapsto	$\overline{22684}$
$(\overline{4}$,	$\overline{2}$,	$\overline{2}$		$\overline{60})$	\mapsto	$\overline{464}$

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

$\mathbb{Z} / 5$	\times	$\mathbb{Z} / 7$	\times	$\mathbb{Z} / 11$	\times	$\mathbb{Z} / 101$	\cong	$\mathbb{Z} / 38885$
$(\overline{4}$,	$\overline{4}$,	$\overline{2}$,	$\overline{60})$	\mapsto	$\overline{22684}$
$(\overline{4}$,	$\overline{2}$,	$\overline{2}$		$\overline{60})$	\mapsto	$\overline{464}$

Error tolerant reconstruction computes

$$
\begin{aligned}
(38885,0) & =84 \cdot(464,1)+(-91,-84) \\
(464,1) & =-3 \cdot(-91,-84)+(191,-251)
\end{aligned}
$$

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

$\mathbb{Z} / 5$	\times	$\mathbb{Z} / 7$	\times	$\mathbb{Z} / 11$	\times	$\mathbb{Z} / 101$	\cong	$\mathbb{Z} / 38885$
$(\overline{4}$,	$\overline{4}$,	$\overline{2}$,	$\overline{60})$	\mapsto	$\overline{22684}$
$(\overline{4}$,	$\overline{2}$,	$\overline{2}$		$\overline{60})$	\mapsto	$\overline{464}$

Error tolerant reconstruction computes

$$
\begin{aligned}
(38885,0) & =84 \cdot(464,1)+(-91,-84) \\
(464,1) & =-3 \cdot(-91,-84)+(191,-251)
\end{aligned}
$$

hence yields

$$
\frac{91}{84}=\frac{7 \cdot 13}{7 \cdot 12}=\frac{13}{12} .
$$

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

$\mathbb{Z} / 5$	\times	$\mathbb{Z} / 7$	\times	$\mathbb{Z} / 11$	\times	$\mathbb{Z} / 101$	\cong	$\mathbb{Z} / 38885$
$(\overline{4}$,	$\overline{4}$,	$\overline{2}$,	$\overline{60})$	\mapsto	$\overline{22684}$
$(\overline{4}$,	$\overline{2}$,	$\overline{2}$		$\overline{60})$	\mapsto	$\overline{464}$

Error tolerant reconstruction computes

$$
\begin{aligned}
(38885,0) & =84 \cdot(464,1)+(-91,-84) \\
(464,1) & =-3 \cdot(-91,-84)+(191,-251)
\end{aligned}
$$

hence yields

$$
\frac{91}{84}=\frac{7 \cdot 13}{7 \cdot 12}=\frac{13}{12} .
$$

Note that

$$
\left(13^{2}+12^{2}\right) \cdot 7=2191<5555=5 \cdot 11 \cdot 101 .
$$

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) $U(0)$ associated to I by deterministic algorithm.

Algorithm

- For I_{p} compute result $U(p)$ over \mathbb{Z} / p for p in finite set of primes \mathcal{P}.

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) $U(0)$ associated to I by deterministic algorithm.

Algorithm

- For I_{p} compute result $U(p)$ over \mathbb{Z} / p for p in finite set of primes \mathcal{P}.
- Reduce \mathcal{P} according to majority vote on $\operatorname{LM}(U(p))$.

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) $U(0)$ associated to I by deterministic algorithm.

Algorithm

- For I_{p} compute result $U(p)$ over \mathbb{Z} / p for p in finite set of primes \mathcal{P}.
- Reduce \mathcal{P} according to majority vote on $\operatorname{LM}(U(p))$.
- For $N=\prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift $U(N)$ to \mathbb{Z} / N.

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) $U(0)$ associated to I by deterministic algorithm.

Algorithm

- For I_{p} compute result $U(p)$ over \mathbb{Z} / p for p in finite set of primes \mathcal{P}.
- Reduce \mathcal{P} according to majority vote on $\operatorname{LM}(U(p))$.
- For $N=\prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift $U(N)$ to \mathbb{Z} / N.
- Lift $U(N)$ by error tolerant rational reconstruction to U.

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) $U(0)$ associated to I by deterministic algorithm.

Algorithm

- For I_{p} compute result $U(p)$ over \mathbb{Z} / p for p in finite set of primes \mathcal{P}.
- Reduce \mathcal{P} according to majority vote on $\operatorname{LM}(U(p))$.
- For $N=\prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift $U(N)$ to \mathbb{Z} / N.
- Lift $U(N)$ by error tolerant rational reconstruction to U.
- Test $U_{p}=U(p)$ for random prime p.

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) $U(0)$ associated to I by deterministic algorithm.

Algorithm

- For I_{p} compute result $U(p)$ over \mathbb{Z} / p for p in finite set of primes \mathcal{P}.
- Reduce \mathcal{P} according to majority vote on $\operatorname{LM}(U(p))$.
- For $N=\prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift $U(N)$ to \mathbb{Z} / N.
- Lift $U(N)$ by error tolerant rational reconstruction to U.
- Test $U_{p}=U(p)$ for random prime p.
- Verify $U=U(0)$.

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) $U(0)$ associated to I by deterministic algorithm.

Algorithm

- For I_{p} compute result $U(p)$ over \mathbb{Z} / p for p in finite set of primes \mathcal{P}.
- Reduce \mathcal{P} according to majority vote on $\operatorname{LM}(U(p))$.
- For $N=\prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift $U(N)$ to \mathbb{Z} / N.
- Lift $U(N)$ by error tolerant rational reconstruction to U.
- Test $U_{p}=U(p)$ for random prime p.
- Verify $U=U(0)$.
- If lift, test or verification fails, then enlarge \mathcal{P}.

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) $U(0)$ associated to I by deterministic algorithm.

Algorithm

- For I_{p} compute result $U(p)$ over \mathbb{Z} / p for p in finite set of primes \mathcal{P}.
- Reduce \mathcal{P} according to majority vote on $\operatorname{LM}(U(p))$.
- For $N=\prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift $U(N)$ to \mathbb{Z} / N.
- Lift $U(N)$ by error tolerant rational reconstruction to U.
- Test $U_{p}=U(p)$ for random prime p.
- Verify $U=U(0)$.
- If lift, test or verification fails, then enlarge \mathcal{P}.

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec \mathbb{Z}, then this algorithm terminates with the correct result.

Normalization

Setup: $A=K[X] / I$ domain.

Definition

The normalization \bar{A} of A is the integral closure of A in its quotient field $Q(A)$.

Normalization

Setup: $A=K[X] / I$ domain.

Definition

The normalization \bar{A} of A is the integral closure of A in its quotient field $Q(A)$. We call A normal if $A=\bar{A}$.

Normalization

Setup: $A=K[X] / I$ domain.

Definition

The normalization \bar{A} of A is the integral closure of A in its quotient field $Q(A)$. We call A normal if $A=\bar{A}$.

Theorem (Noether)

\bar{A} is a finitely generated A-module.

Normalization

Setup: $A=K[X] / I$ domain.

Definition

The normalization \bar{A} of A is the integral closure of A in its quotient field $Q(A)$. We call A normal if $A=\bar{A}$.

Theorem (Noether)

\bar{A} is a finitely generated A-module.

Example

Curve $I=\left\langle x^{3}+x^{2}-y^{2}\right\rangle \subset K[x, y]$

$$
\begin{aligned}
A=K[x, y] / I & \cong K\left[t^{2}-1, t^{3}-t\right] \quad \subset \quad K[t] \cong \bar{A} \\
\bar{x} & \mapsto t^{2}-1 \\
\bar{y} & \mapsto t^{3}-t
\end{aligned}
$$

Normalization

Setup: $A=K[X] / I$ domain.

Definition

The normalization \bar{A} of A is the integral closure of A in its quotient field $Q(A)$. We call A normal if $A=\bar{A}$.

Theorem (Noether)

\bar{A} is a finitely generated A-module.

Example

Curve $I=\left\langle x^{3}+x^{2}-y^{2}\right\rangle \subset K[x, y]$

$$
\begin{aligned}
A=K[x, y] / I & \cong K\left[t^{2}-1, t^{3}-t\right] \quad \subset \quad K[t] \cong \bar{A} \\
\bar{x} & \mapsto t^{2}-1 \\
\bar{y} & \mapsto t^{3}-t
\end{aligned}
$$

As an A-module $\bar{A}=\left\langle 1, \frac{\bar{y}}{\bar{x}}\right\rangle$.

Normalization

Lemma
 If $J \subset A$ is an ideal and $0 \neq g \in J$, then

Normalization

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

$$
\begin{array}{rlrl}
A & \hookrightarrow \operatorname{Hom}_{A}(J, J) & \cong \frac{1}{g}\left(g J:_{A} J\right) & \subset \bar{A} \\
a & \mapsto a \cdot \\
\varphi & \mapsto \frac{\varphi(g)}{g}
\end{array}
$$

Normalization

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

$$
\begin{array}{rlrl}
A & \hookrightarrow \operatorname{Hom}_{A}(J, J) & \cong \frac{1}{g}\left(g J:_{A} J\right) & \subset \bar{A} \\
a & \mapsto a \cdot \\
\varphi & \mapsto \frac{\varphi(g)}{g}
\end{array}
$$

Algorithm

Starting from $A_{0}=A$ and $J_{0}=J$,

Normalization

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

$$
\begin{array}{rlrl}
A & \hookrightarrow \operatorname{Hom}_{A}(J, J) & \cong \frac{1}{g}\left(g J:_{A} J\right) \subset \bar{A} \\
a & \mapsto a \cdot \\
\varphi & \mapsto \frac{\varphi(g)}{g}
\end{array}
$$

Algorithm

Starting from $A_{0}=A$ and $J_{0}=J$, setting

$$
A_{i+1}=\frac{1}{g}\left(g J_{i}: A_{i} J_{i}\right) \quad J_{i}=\sqrt{J A_{i}}
$$

Normalization

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

$$
\begin{array}{rlrl}
A & \hookrightarrow \operatorname{Hom}_{A}(J, J) & \cong \frac{1}{g}\left(g J:_{A} J\right) & \subset \bar{A} \\
a & \mapsto a \cdot \\
\varphi & \mapsto \frac{\varphi(g)}{g}
\end{array}
$$

Algorithm

Starting from $A_{0}=A$ and $J_{0}=J$, setting

$$
A_{i+1}=\frac{1}{g}\left(g J_{i}: A_{i} J_{i}\right) \quad J_{i}=\sqrt{J A_{i}}
$$

we get a chain of extensions of reduced Noetherian rings

$$
A=A_{0} \subset \cdots \subset A_{i} \subset \cdots \subset A_{m}=A_{m+1}
$$

Terminates since A is Noetherian.

Grauert-Remmert criterion

Non-normal locus $N(A)$ is contained in singular locus $\operatorname{Sing}(A)$.

Grauert-Remmert criterion

Non-normal locus $N(A)$ is contained in singular locus $\operatorname{Sing}(A)$.
Theorem (Grauert-Remmert)
Let $0 \neq J \subset A$ be an ideal with $J=\sqrt{J}$

Grauert-Remmert criterion

Non-normal locus $N(A)$ is contained in singular locus $\operatorname{Sing}(A)$.
Theorem (Grauert-Remmert)
Let $0 \neq J \subset A$ be an ideal with $J=\sqrt{J}$ and

$$
N(A) \subset V(J)
$$

Grauert-Remmert criterion

Non-normal locus $N(A)$ is contained in singular locus $\operatorname{Sing}(A)$.

Theorem (Grauert-Remmert)

Let $0 \neq J \subset A$ be an ideal with $J=\sqrt{J}$ and

$$
N(A) \subset V(J)
$$

Then A is normal iff the inclusion

$$
\begin{aligned}
& A \hookrightarrow \\
& a \mapsto \\
& \operatorname{Hom}_{A}(J, J)
\end{aligned}
$$

is an isomorphism.

Grauert-Remmert criterion

Non-normal locus $N(A)$ is contained in singular locus $\operatorname{Sing}(A)$.

Theorem (Grauert-Remmert)

Let $0 \neq J \subset A$ be an ideal with $J=\sqrt{J}$ and

$$
N(A) \subset V(J)
$$

Then A is normal iff the inclusion

$$
\begin{aligned}
& A \hookrightarrow \\
& a \mapsto \\
& \operatorname{Hom}_{A}(J, J)
\end{aligned}
$$

is an isomorphism.
\Longrightarrow For $J=\sqrt{\operatorname{Jac}(I)}$ algorithm terminates with $A_{m}=A_{m+1}=\bar{A}$,

Grauert-Remmert criterion

Non-normal locus $N(A)$ is contained in singular locus $\operatorname{Sing}(A)$.

Theorem (Grauert-Remmert)

Let $0 \neq J \subset A$ be an ideal with $J=\sqrt{J}$ and

$$
N(A) \subset V(J)
$$

Then A is normal iff the inclusion

$$
\begin{aligned}
& A \hookrightarrow \\
& a \mapsto \\
& \operatorname{Hom}_{A}(J, J)
\end{aligned}
$$

is an isomorphism.
\Longrightarrow For $J=\sqrt{\mathrm{Jac}(I)}$ algorithm terminates with $A_{m}=A_{m+1}=\bar{A}$, since:

Lemma

$N\left(A_{i}\right) \subset V\left(\sqrt{J A_{i}}\right)$

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose

$$
\operatorname{Sing}(A)=\left\{P_{1}, \ldots, P_{r}\right\}
$$

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose

$$
\operatorname{Sing}(A)=\left\{P_{1}, \ldots, P_{r}\right\}
$$

and

$$
A \subset B_{i} \subset \bar{A}
$$

is the ring given by the normalization algorithm applied to P_{i} instead of J

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose

$$
\operatorname{Sing}(A)=\left\{P_{1}, \ldots, P_{r}\right\}
$$

and

$$
A \subset B_{i} \subset \bar{A}
$$

is the ring given by the normalization algorithm applied to P_{i} instead of J . Then

$$
\begin{aligned}
\left(B_{i}\right)_{P_{i}} & =\overline{A_{P_{i}}} \\
\left(B_{i}\right)_{Q} & =A_{Q} \text { for all } P_{i} \neq Q \in \operatorname{Spec} A
\end{aligned}
$$

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose

$$
\operatorname{Sing}(A)=\left\{P_{1}, \ldots, P_{r}\right\}
$$

and

$$
A \subset B_{i} \subset \bar{A}
$$

is the ring given by the normalization algorithm applied to P_{i} instead of J . Then

$$
\begin{aligned}
\left(B_{i}\right)_{P_{i}} & =\overline{A_{P_{i}}} \\
\left(B_{i}\right)_{Q} & =A_{Q} \text { for all } P_{i} \neq Q \in \operatorname{Spec} A
\end{aligned}
$$

and

$$
\bar{A}=B_{1}+\ldots+B_{r} .
$$

We call B_{i} the minimal local contribution to \bar{A} at P_{i}.

Adjoint ideals

Setup: $\Gamma \subset \mathbb{P}^{r}$ integral, non-degenerate projective curve, $\pi: \bar{\Gamma} \rightarrow \Gamma$ normalization map, $I(\Gamma) \varsubsetneqq I \subset k\left[x_{0}, \ldots, x_{r}\right]$ saturated homogeneous ideal.

Adjoint ideals

Setup: $\Gamma \subset \mathbb{P}^{r}$ integral, non-degenerate projective curve, $\pi: \bar{\Gamma} \rightarrow \Gamma$ normalization map, $I(\Gamma) \varsubsetneqq I \subset k\left[x_{0}, \ldots, x_{r}\right]$ saturated homogeneous ideal. Let H be pullback of hyperplane, $\Delta(I)$ pullback of $\operatorname{Proj}(S / I)$.

Adjoint ideals

Setup: $\Gamma \subset \mathbb{P}^{r}$ integral, non-degenerate projective curve, $\pi: \bar{\Gamma} \rightarrow \Gamma$ normalization map, $I(\Gamma) \varsubsetneqq I \subset k\left[x_{0}, \ldots, x_{r}\right]$ saturated homogeneous ideal. Let H be pullback of hyperplane, $\Delta(I)$ pullback of $\operatorname{Proj}(S / I)$. Then

$$
0 \rightarrow \widetilde{I} \mathcal{O}_{\Gamma} \rightarrow \pi_{*}\left(\widetilde{\left.\mathscr{I} \mathcal{O}_{\bar{\Gamma}}\right) \rightarrow \mathcal{F} \rightarrow 0}\right.
$$

Adjoint ideals

Setup: $\Gamma \subset \mathbb{P}^{r}$ integral, non-degenerate projective curve, $\pi: \bar{\Gamma} \rightarrow \Gamma$ normalization map, $I(\Gamma) \varsubsetneqq I \subset k\left[x_{0}, \ldots, x_{r}\right]$ saturated homogeneous ideal. Let H be pullback of hyperplane, $\Delta(I)$ pullback of $\operatorname{Proj}(S / I)$. Then

$$
0 \rightarrow \widetilde{\mathcal{I}} \mathcal{O}_{\Gamma} \rightarrow \pi_{*}\left(\widetilde{\mathcal{I}} \mathcal{O}_{\bar{\Gamma}}\right) \rightarrow \mathcal{F} \rightarrow 0
$$

gives for $m \gg 0$ linear maps

$$
0 \rightarrow I_{m} / I(\Gamma)_{m} \xrightarrow{\overline{\varrho_{m}}} H^{0}\left(\bar{\Gamma}, \mathcal{O}_{\bar{\Gamma}}(m H-\Delta(I))\right) \rightarrow H^{0}(\Gamma, \mathcal{F}) \rightarrow 0
$$

Definition

I is an adjoint ideal of Γ if $\overline{\varrho_{m}}$ surjective for $m \gg 0$.

Adjoint ideals

Setup: $\Gamma \subset \mathbb{P}^{r}$ integral, non-degenerate projective curve, $\pi: \bar{\Gamma} \rightarrow \Gamma$ normalization map, $I(\Gamma) \varsubsetneqq I \subset k\left[x_{0}, \ldots, x_{r}\right]$ saturated homogeneous ideal. Let H be pullback of hyperplane, $\Delta(I)$ pullback of $\operatorname{Proj}(S / I)$. Then
gives for $m \gg 0$ linear maps

$$
0 \rightarrow I_{m} / I(\Gamma)_{m} \xrightarrow{\overline{\varrho_{m}}} H^{0}\left(\bar{\Gamma}, \mathcal{O}_{\bar{\Gamma}}(m H-\Delta(I))\right) \rightarrow H^{0}(\Gamma, \mathcal{F}) \rightarrow 0
$$

Definition

I is an adjoint ideal of Γ if $\overline{\varrho_{m}}$ surjective for $m \gg 0$.

$$
h^{0}(\Gamma, \mathcal{F})=\sum_{P \in \operatorname{Sing}(\Gamma)} \ell\left(I_{P} \overline{\mathcal{O}_{\Gamma, P}} / I_{P}\right)
$$

Theorem

$$
I_{\text {adjoint }}^{\Longleftrightarrow I_{P}} \overline{\mathcal{O}_{\Gamma, P}}=I_{P} \text { for all } P \in \operatorname{Sing}(\Gamma)
$$

Conductor is largest ideal with this property.

Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal $\mathfrak{G} \subset K\left[x_{0}, \ldots, x_{r}\right]$ with

$$
\mathfrak{G}_{P}=\mathcal{C}_{\mathcal{O}_{\Gamma, P}} \text { for all } P \in \operatorname{Sing}(\Gamma)
$$

Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal $\mathfrak{G} \subset K\left[x_{0}, \ldots, x_{r}\right]$ with

$$
\mathfrak{G}_{P}=\mathcal{C}_{\mathcal{O}_{\Gamma, P}} \text { for all } P \in \operatorname{Sing}(\Gamma)
$$

Applications:

Example

If Γ is plane curve of degree n, then \mathfrak{G}_{n-3} cuts out canonical linear series.

Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal $\mathfrak{G} \subset K\left[x_{0}, \ldots, x_{r}\right]$ with

$$
\mathfrak{G}_{P}=\mathcal{C}_{\mathcal{O}_{\Gamma, P}} \text { for all } P \in \operatorname{Sing}(\Gamma)
$$

Applications:

Example

If Γ is plane curve of degree n, then \mathfrak{G}_{n-3} cuts out canonical linear series.

Example

If Γ is plane rational of degree n then \mathfrak{G}_{n-2} maps Γ to rational normal curve of degree $n-2$ in \mathbb{P}^{n-2}.

Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal $\mathfrak{G} \subset K\left[x_{0}, \ldots, x_{r}\right]$ with

$$
\mathfrak{G}_{P}=\mathcal{C}_{\mathcal{O}_{\Gamma, P}} \text { for all } P \in \operatorname{Sing}(\Gamma)
$$

Applications:

Example

If Γ is plane curve of degree n, then \mathfrak{G}_{n-3} cuts out canonical linear series.

Example

If Γ is plane rational of degree n then \mathfrak{G}_{n-2} maps Γ to rational normal curve of degree $n-2$ in \mathbb{P}^{n-2}.

Example

Brill-Noether-Algorithm for computing Riemann-Roch spaces.

Example

Minimal generators of \mathfrak{G} for rational curve of degree 5 :

Example

Minimal generators of \mathfrak{G} for rational curve of degree 5 :

Example

Minimal generators of \mathfrak{G} for rational curve of degree 5 :

Example

Minimal generators of \mathfrak{G} for rational curve of degree 5 :

Example

Minimal generators of \mathfrak{G} for rational curve of degree 5 :

Example

Local-to-global algorithm

Definition

The local adjoint ideal of Γ at $P \in \operatorname{Sing} \Gamma$ is the largest homogeneous ideal $\mathfrak{G}(P) \subset k\left[x_{0}, \ldots, x_{r}\right]$ with

$$
\mathfrak{G}(P)_{P}=\mathcal{C}_{\mathcal{O}_{\Gamma, P}}
$$

Local-to-global algorithm

Definition

The local adjoint ideal of Γ at $P \in \operatorname{Sing} \Gamma$ is the largest homogeneous ideal $\mathfrak{G}(P) \subset k\left[x_{0}, \ldots, x_{r}\right]$ with

$$
\mathfrak{G}(P)_{P}=\mathcal{C}_{\mathcal{O}_{\Gamma, P}}
$$

Lemma (BDLP, 2015)

$$
\mathfrak{G}=\bigcap_{P \in \operatorname{Sing} \Gamma} \mathfrak{G}(P)
$$

The $\mathfrak{G}(P)$ can be computed in parallel via normalization.

Local-to-global algorithm

Definition

The local adjoint ideal of Γ at $P \in \operatorname{Sing} \Gamma$ is the largest homogeneous ideal $\mathfrak{G}(P) \subset k\left[x_{0}, \ldots, x_{r}\right]$ with

$$
\mathfrak{G}(P)_{P}=\mathcal{C}_{\mathcal{O}_{\Gamma, P}}
$$

Lemma (BDLP, 2015)

$$
\mathfrak{G}=\bigcap_{P \in \operatorname{Sing} \Gamma} \mathfrak{G}(P)
$$

The $\mathfrak{G}(P)$ can be computed in parallel via normalization.

Algorithm (BDLP, 2015)

If $\frac{1}{d} U$ is the minimal local contribution at P then

$$
\mathfrak{G}(P)=(d: U)^{h}
$$

Special types of singularities

If $\Gamma \subset \mathbb{P}^{2}$ has a singularity of type A_{n} at $P=(0: 0: 1)$, then given by

$$
f=T^{2}+W^{n+1} \quad \text { with } \quad T, W \in \mathbb{C}[[x, y]] .
$$

Special types of singularities

If $\Gamma \subset \mathbb{P}^{2}$ has a singularity of type A_{n} at $P=(0: 0: 1)$, then given by

$$
f=T^{2}+W^{n+1} \quad \text { with } \quad T, W \in \mathbb{C}[[x, y]] .
$$

Compute $T_{j}=T+O(j+1)$ inductively.

Special types of singularities

If $\Gamma \subset \mathbb{P}^{2}$ has a singularity of type A_{n} at $P=(0: 0: 1)$, then given by

$$
f=T^{2}+W^{n+1} \quad \text { with } \quad T, W \in \mathbb{C}[[x, y]] .
$$

Compute $T_{j}=T+O(j+1)$ inductively.

Lemma

If $P=(0,0)$ is of type A_{n} and $s=\left\lfloor\frac{n+1}{2}\right\rfloor$, then

$$
\mathfrak{G}(P)=\left\langle x^{s}, T_{s-1}, y^{s}\right\rangle^{h} \subset \mathbb{C}[x, y, z]
$$

Special types of singularities

If $\Gamma \subset \mathbb{P}^{2}$ has a singularity of type A_{n} at $P=(0: 0: 1)$, then given by

$$
f=T^{2}+W^{n+1} \quad \text { with } \quad T, W \in \mathbb{C}[[x, y]] .
$$

Compute $T_{j}=T+O(j+1)$ inductively.

Lemma

If $P=(0,0)$ is of type A_{n} and $s=\left\lfloor\frac{n+1}{2}\right\rfloor$, then

$$
\mathfrak{G}(P)=\left\langle x^{s}, T_{s-1}, y^{s}\right\rangle^{h} \subset \mathbb{C}[x, y, z]
$$

Similar results for D_{n}, E_{n} and other singularities in Arnold's list.

Example

$f=x^{4}-y^{2}+x^{5}$ with A_{3} singularity. Then $\mathfrak{G}(P)=\left\langle x^{2}, y\right\rangle$.

Modular version of the algorithm

Applying the general modular strategy gives two-fold parallel algorithm.

Modular version of the algorithm

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_{p} defined by $I(\Gamma)_{p}$.

Modular version of the algorithm

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_{p} defined by $I(\Gamma)_{p}$. Verification?

Modular version of the algorithm

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_{p} defined by $I(\Gamma)_{p}$. Verification?

Theorem (Arbarello, Ciliberto, 1983, Chiarli, 1984)

Let $I(\Gamma) \varsubsetneqq I \subset k\left[x_{0}, \ldots, x_{r}\right]$ be saturated homogeneous. Then

$$
\operatorname{deg} \Delta(I) \leq \operatorname{deg} I+\delta(\Gamma)
$$

Modular version of the algorithm

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_{p} defined by $I(\Gamma)_{p}$. Verification?

Theorem (Arbarello, Ciliberto, 1983, Chiarli, 1984)

Let $I(\Gamma) \varsubsetneqq I \subset k\left[x_{0}, \ldots, x_{r}\right]$ be saturated homogeneous. Then

$$
\operatorname{deg} \Delta(I) \leq \operatorname{deg} I+\delta(\Gamma)
$$

and I is an adjoint ideal of Γ iff

$$
\operatorname{deg} \Delta(I)=\operatorname{deg} I+\delta(\Gamma)
$$

Modular version of the algorithm

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_{p} defined by $I(\Gamma)_{p}$. Verification?

Theorem (Arbarello, Ciliberto, 1983, Chiarli, 1984)

Let $I(\Gamma) \varsubsetneqq I \subset k\left[x_{0}, \ldots, x_{r}\right]$ be saturated homogeneous. Then

$$
\operatorname{deg} \Delta(I) \leq \operatorname{deg} I+\delta(\Gamma)
$$

and I is an adjoint ideal of Γ iff

$$
\operatorname{deg} \Delta(I)=\operatorname{deg} I+\delta(\Gamma)
$$

Theorem (BDLP, 2015, corollary to Lipman, 2006)

$$
\delta(\Gamma) \leq \delta\left(\Gamma_{p}\right)
$$

and δ-constant flat family admits a simultaneous normalization.

Verification

$\widetilde{d}(g)=\operatorname{deg}($ divisor cut out by g away from Sing $(\Gamma))$.

Verification

$\widetilde{d}(g)=\operatorname{deg}($ divisor cut out by g away from Sing $(\Gamma))$.
Theorem (BDLP, 2015)
Let $I \subset k\left[x_{0}, \ldots, x_{r}\right]$ be saturated homogeneous with $I(\Gamma) \varsubsetneqq I$ and suppose G is reduced Gröbner basis of I. If p is a prime and $g \in I$ is homogeneous of degree m such that
(1) $\mathrm{LM}\left(I\left(\Gamma_{p}\right)\right)=\mathrm{LM}(I(\Gamma))$

Verification

$\widetilde{d}(g)=\operatorname{deg}($ divisor cut out by g away from $\operatorname{Sing}(\Gamma))$.

Theorem (BDLP, 2015)

Let $I \subset k\left[x_{0}, \ldots, x_{r}\right]$ be saturated homogeneous with $I(\Gamma) \varsubsetneqq I$ and suppose G is reduced Gröbner basis of I. If p is a prime and $g \in I$ is homogeneous of degree m such that
(1) $\mathrm{LM}\left(I\left(\Gamma_{p}\right)\right)=\mathrm{LM}(I(\Gamma))$
(2) $G_{p}=G(p)$ is reduced Gröbner basis of an adjoint ideal of Γ_{p}

Verification

$\widetilde{d}(g)=\operatorname{deg}($ divisor cut out by g away from Sing $(\Gamma))$.

Theorem (BDLP, 2015)

Let $I \subset k\left[x_{0}, \ldots, x_{r}\right]$ be saturated homogeneous with $I(\Gamma) \varsubsetneqq I$ and suppose G is reduced Gröbner basis of I. If p is a prime and $g \in I$ is homogeneous of degree m such that
(1) $\mathrm{LM}\left(I\left(\Gamma_{p}\right)\right)=\mathrm{LM}(I(\Gamma))$
(2) $G_{p}=G(p)$ is reduced Gröbner basis of an adjoint ideal of Γ_{p}
(3) $\widetilde{d}\left(g_{p}\right)=(\operatorname{deg} \Gamma) \cdot m-\operatorname{deg} I_{p}-\delta(\Gamma)$

Verification

$\widetilde{d}(g)=\operatorname{deg}($ divisor cut out by g away from Sing $(\Gamma))$.

Theorem (BDLP, 2015)

Let $I \subset k\left[x_{0}, \ldots, x_{r}\right]$ be saturated homogeneous with $I(\Gamma) \varsubsetneqq I$ and suppose G is reduced Gröbner basis of I. If p is a prime and $g \in I$ is homogeneous of degree m such that
(1) $\mathrm{LM}\left(I\left(\Gamma_{p}\right)\right)=\mathrm{LM}(I(\Gamma))$
(2) $G_{p}=G(p)$ is reduced Gröbner basis of an adjoint ideal of Γ_{p}
(3) $\widetilde{d}\left(g_{p}\right)=(\operatorname{deg} \Gamma) \cdot m-\operatorname{deg} I_{p}-\delta(\Gamma)$
(1) $\left|m H-\Delta\left(I_{p}\right)\right|$ is non-special

Verification

$\widetilde{d}(g)=\operatorname{deg}($ divisor cut out by g away from Sing $(\Gamma))$.

Theorem (BDLP, 2015)

Let $I \subset k\left[x_{0}, \ldots, x_{r}\right]$ be saturated homogeneous with $I(\Gamma) \varsubsetneqq I$ and suppose G is reduced Gröbner basis of I. If p is a prime and $g \in I$ is homogeneous of degree m such that
(1) $\mathrm{LM}\left(I\left(\Gamma_{p}\right)\right)=\mathrm{LM}(I(\Gamma))$
(2) $G_{p}=G(p)$ is reduced Gröbner basis of an adjoint ideal of Γ_{p}
(3) $\widetilde{d}\left(g_{p}\right)=(\operatorname{deg} \Gamma) \cdot m-\operatorname{deg} I_{p}-\delta(\Gamma)$
(1) $\left|m H-\Delta\left(I_{p}\right)\right|$ is non-special
then

$$
\begin{aligned}
\operatorname{deg} \Delta(I) & =\operatorname{deg} \Delta\left(I_{p}\right)=(\operatorname{deg} \Gamma) \cdot m-\widetilde{d}\left(g_{p}\right) \\
\delta(\Gamma) & =\delta\left(\Gamma_{p}\right)
\end{aligned}
$$

and I is an adjoint ideal.

Timings in Singular

Plane curve f_{n} of degree n with $\binom{n-1}{2}$ singularities of type A_{1}.

Timings in Singular

Plane curve f_{n} of degree n with $\binom{n-1}{2}$ singularities of type A_{1}.

			f_{5}		f_{6}		f_{7}	
locNormal			2.1		56		-	
Maple-IB			5.1		47		318	
LA			98		4400		-	
IQ			1.3		54		3800	
locIQ	\square		1.3	(1)	54	(1)	3800	(1)
ADE	\square		. 18	(1)	1.2	(1)	49	(1)
modLocIQ			6.4	[33]	19	[53]	150	[75]
			6.2	[33]	18	[53]	104	[75]
			. 36	(74)	1.6	(153)	51	(230)
			. 21	(74)	0.48	(153)	5.2	(230)

[primes] (cores)

Timings in Singular

Plane curve $f_{n, d}$ of degree d with one singularity of type D_{n}. Curves h_{1}, h_{2} of degree 20 and 28 in \mathbb{P}^{5}.

Timings in Singular

Plane curve $f_{n, d}$ of degree d with one singularity of type D_{n}. Curves h_{1}, h_{2} of degree 20 and 28 in \mathbb{P}^{5}.

	¢		$f_{50,500}$		$f_{400,500}$		h_{1}		h_{2}	
locNormal			. 67		4.9		21		-	
Maple-IB			1830		-		N/A		N/A	
LA			-		-		N/A		N/A	
IQ			. 67		5.0		30		-	
locIQ	\square		. 67	(1)	5.0	(1)	7.5	(6)	-	
ADE	\square		. 58	(1)	5.0	(1)	N/A		N/A	
modLocIQ		\square	1.5	[2]	24	[2]	27	[3]	2600	[5]
	\square	\square	. 77	(2)	17	(2)	4.0	[27]	59	(69)

[primes] (cores)

References

（1．J．Boehm，W．Decker，C．Fieker，G．Pfister．The use of bad primes in rational reconstruction，Math．Comp． 84 （2015）．
嗇 J．Boehm，W．Decker，S．Laplagne，G．Pfister，A．Steenpaß，S．Steidel． Parallel algorithms for normalization，J．Symb．Comp． 51 （2013）．
圊 J．Boehm，W．Decker，G．Pfister，S．Laplagne．Local to global algo－ rithms for the Gorenstein adjoint ideal of a curve，arXiv：1505．05040．
國 J．Boehm，W．Decker，G．Pfister，S．Laplagne．adjointideal．lib．A Singular 4 library for computing adjoint ideals，Singular distribution．

R．Kornerup，R．T．Gregory，Mapping integers and Hensel codes onto Farey fractions，BIT 23 （1983）．
E．Arnold，Modular algorithms for computing Gröbner bases，J．Symb． Comp． 35 （2003）．
囲 G．－M．Greuel，S．Laplagne，S．Seelisch，Normalization of rings，J． Symb．Comp．（2010）．

