Modular Techniques in Computational Algebraic Geometry

Janko Boehm joint with W. Decker, C. Fieker, S. Laplagne, G. Pfister

Technische Universität Kaiserslautern

01 October 2015

• Many exact computations in computer algebra are carried out over Q and extensions thereof.

- Many exact computations in computer algebra are carried out over Q and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over Q.

- Many exact computations in computer algebra are carried out over Q and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over Q.
- Fundamental approach:
 - Compute modulo primes.

- Many exact computations in computer algebra are carried out over Q and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over Q.
- Fundamental approach:
 - Compute modulo primes.
 - Reconstruct result over Q.

- Many exact computations in computer algebra are carried out over Q and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over Q.
- Fundamental approach:
 - Compute modulo primes.
 - 2 Reconstruct result over Q.
- Benefits:
 - Avoid intermediate coefficient growth.

- Many exact computations in computer algebra are carried out over Q and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over Q.
- Fundamental approach:
 - Compute modulo primes.
 - 2 Reconstruct result over Q.
- Benefits:
 - Avoid intermediate coefficient growth.
 - Obtain parallel version of the algorithm.

- Many exact computations in computer algebra are carried out over Q and extensions thereof.
- Modular techniques are an important tool to improve performance of algorithms over Q.
- Fundamental approach:
 - Compute modulo primes.
 - Reconstruct result over Q.
- Benefits:
 - Avoid intermediate coefficient growth.
 - Obtain parallel version of the algorithm.
- Goal:

General reconstruction scheme for algorithms in commutative algebra, algebraic geometry, number theory.

- Modular computations and rational reconstruction
- Bad primes

Janko Boehm (TU-KL)

< 4 → <

э

Outline

- Modular computations and rational reconstruction
- Bad primes
- Error tolerant lifting
- General reconstruction scheme

- Modular computations and rational reconstruction
- Bad primes
- Error tolerant lifting
- General reconstruction scheme
- Normalization
- Local-to-global algorithm for adjoint ideals
- Modular version and verification

Example

Compute

$$\frac{3}{4} + \frac{1}{3} = \frac{13}{12}$$

using modular techniques:

Janko Boehm (TU-KL)

Example

Compute

$$\frac{3}{4} + \frac{1}{3} = \frac{13}{12}$$

using modular techniques:

 $\mathbb{Z}/5 \times \mathbb{Z}/7 \times \mathbb{Z}/11 \times \mathbb{Z}/101 \cong \mathbb{Z}/38885$ $\frac{3}{4} \mapsto (\overline{2} , \overline{6} , \overline{9} , \overline{26})$

3. 3

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

Compute

$$\frac{3}{4} + \frac{1}{3} = \frac{13}{12}$$

using modular techniques:

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

Compute

$$\frac{3}{4} + \frac{1}{3} = \frac{13}{12}$$

using modular techniques:

		$\mathbb{Z}/5$	×	$\mathbb{Z}/7$	×	$\mathbb{Z}/11$	×	$\mathbb{Z}/101$	\cong	$\mathbb{Z}/38885$
$\frac{3}{4}$	\mapsto	(2	,	$\overline{6}$,	9	,	$\overline{26}\)$		
					+					
$\frac{1}{3}$	\mapsto	(2	,	5	,	4	,	$\overline{\bf 34}\)$		
					П					
		(4	,	4	,	2	,	$\overline{60}$)		

Example

Compute

$$\frac{3}{4} + \frac{1}{3} = \frac{13}{12}$$

using modular techniques:

		$\mathbb{Z}/5$	×	$\mathbb{Z}/7$	×	$\mathbb{Z}/11$	×	$\mathbb{Z}/101$	\cong	$\mathbb{Z}/38885$
$\frac{3}{4}$	\mapsto	(2	,	$\overline{6}$,	9	,	$\overline{26}\)$		
					+					
$\frac{1}{3}$	\mapsto	(2	,	5	,	$\overline{4}$,	$\overline{34}$)		
					П					
		(4	,	4	,	2	,	$\overline{60}$)	\mapsto	22684

Example

Compute

$$\frac{3}{4} + \frac{1}{3} = \frac{13}{12}$$

using modular techniques:

		$\mathbb{Z}/5$	×	$\mathbb{Z}/7$	×	$\mathbb{Z}/11$	×	$\mathbb{Z}/101$	\cong	$\mathbb{Z}/38885$
$\frac{3}{4}$	\mapsto	(2	,	$\overline{6}$,	9	,	$\overline{26}\)$		
					+					
$\frac{1}{3}$	\mapsto	(2	,	5	,	$\overline{4}$,	$\overline{34}$)		
					П					
		(4	,	4	,	2	,	$\overline{60}$)	\mapsto	22684

How to obtain a rational number from $\overline{22684}$?

Janko Boehm (TU-KL)

Theorem (Kornerup, Gregory, 1983)

The Farey map

Janko Boehm (TU-KL)

$$\begin{cases} \frac{a}{b} \in \mathbb{Q} \ \middle| \ \gcd(a, b) = 1 \\ \gcd(b, N) = 1 \end{cases} |a|, |b| \le \sqrt{(N-1)/2} \\ \frac{a}{b} \longmapsto \overline{a} \cdot \overline{b}^{-1} \end{cases}$$

Theorem (Kornerup, Gregory, 1983)

The Farey map

$$\begin{cases} \frac{a}{b} \in \mathbb{Q} \mid \gcd(a, b) = 1 \\ \gcd(b, N) = 1 \end{cases} \quad |a|, |b| \le \sqrt{(N-1)/2} \end{cases} \longrightarrow \mathbb{Z}/N$$

$$\frac{a}{b} \longmapsto \overline{a} \cdot \overline{b}^{-1}$$
is injective.

Theorem (Kornerup, Gregory, 1983)

The Farey map

$$\begin{cases} \frac{a}{b} \in \mathbb{Q} \mid \left| \begin{array}{c} \gcd(a, b) = 1 \\ \gcd(b, N) = 1 \end{array} \right| |a|, |b| \leq \sqrt{(N-1)/2} \end{cases} \longrightarrow \mathbb{Z}/N$$

$$\frac{a}{b} \longmapsto \overline{a} \cdot \overline{b}^{-1}$$
is injective. Efficient electric for preimere

is injective. Efficient algorithm for preimage.

Theorem (Kornerup, Gregory, 1983)

The Farey map

$$\begin{cases} \frac{a}{b} \in \mathbb{Q} \ \middle| \begin{array}{c} \gcd(a, b) = 1 \\ \gcd(b, N) = 1 \end{array} \quad |a|, |b| \le \sqrt{(N-1)/2} \end{cases} \longrightarrow \mathbb{Z}/N \\ \frac{a}{b} \longmapsto \overline{a} \cdot \overline{b}^{-1} \end{cases}$$

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example

$$\left\{ \begin{array}{ll} \frac{a}{b} \in \mathbb{Q} \ \middle| \begin{array}{c} \gcd(a,b) = 1 \\ \gcd(b,38885) = 1 \end{array} \quad |a|,|b| \le 139 \right\} \quad \longrightarrow \quad \mathbb{Z}/38885$$

Theorem (Kornerup, Gregory, 1983)

The Farey map

$$\begin{cases} \frac{a}{b} \in \mathbb{Q} \ \middle| \begin{array}{c} \gcd(a, b) = 1 \\ \gcd(b, N) = 1 \end{array} \quad |a|, |b| \le \sqrt{(N-1)/2} \end{cases} \longrightarrow \mathbb{Z}/N \\ \frac{a}{b} \longmapsto \overline{a} \cdot \overline{b}^{-1} \end{cases}$$

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example

$$\begin{cases} \frac{a}{b} \in \mathbb{Q} \mid \begin{array}{c} \gcd(a, b) = 1 \\ \gcd(b, 38885) = 1 \end{array} \quad |a|, |b| \le 139 \end{cases} \longrightarrow \mathbb{Z}/38885$$
$$\frac{13}{12} \longmapsto \overline{22684} \end{cases}$$

• Compute result over \mathbb{Z}/p_i for distinct primes p_1, \ldots, p_r .

Janko Boehm (TU-KL)

- **Or Compute result over** \mathbb{Z}/p_i for distinct primes p_1, \ldots, p_r .
- **2** For $N = p_1 \cdot \ldots \cdot p_r$ compute lift w.r.t Chinese remainder isomorphism

 $\mathbb{Z}/N \cong \mathbb{Z}/p_1 \times \ldots \times \mathbb{Z}/p_r$

- Compute result over \mathbb{Z}/p_i for distinct primes p_1, \ldots, p_r .
- **2** For $N = p_1 \cdot \ldots \cdot p_r$ compute lift w.r.t Chinese remainder isomorphism

$$\mathbb{Z}/N \cong \mathbb{Z}/p_1 \times \ldots \times \mathbb{Z}/p_r$$

If exists, compute preimage w.r.t injective Farey map.

- Compute result over \mathbb{Z}/p_i for distinct primes p_1, \ldots, p_r .
- **2** For $N = p_1 \cdot \ldots \cdot p_r$ compute lift w.r.t Chinese remainder isomorphism

$$\mathbb{Z}/N \cong \mathbb{Z}/p_1 \times \ldots \times \mathbb{Z}/p_r$$

- If exists, compute preimage w.r.t injective Farey map.
- Verify correctness of lift.

- **Or Compute result over** \mathbb{Z}/p_i for distinct primes p_1, \ldots, p_r .
- **3** For $N = p_1 \cdot \ldots \cdot p_r$ compute lift w.r.t Chinese remainder isomorphism

$$\mathbb{Z}/N \cong \mathbb{Z}/p_1 \times \ldots \times \mathbb{Z}/p_r$$

- If exists, compute preimage w.r.t injective Farey map.
- Overify correctness of lift.
- This will yield correct result, provided
 - N is large enough s.t. the Q-result is in source of Farey map, and

- **Or Compute result over** \mathbb{Z}/p_i for distinct primes p_1, \ldots, p_r .
- **3** For $N = p_1 \cdot \ldots \cdot p_r$ compute lift w.r.t Chinese remainder isomorphism

$$\mathbb{Z}/N \cong \mathbb{Z}/p_1 \times \ldots \times \mathbb{Z}/p_r$$

- If exists, compute preimage w.r.t injective Farey map.
- Overify correctness of lift.
- This will yield correct result, provided
 - N is large enough s.t. the Q-result is in source of Farey map, and
 - none of the p_i is bad.

- **Or Compute result over** \mathbb{Z}/p_i for distinct primes p_1, \ldots, p_r .
- **2** For $N = p_1 \cdot \ldots \cdot p_r$ compute lift w.r.t Chinese remainder isomorphism

$$\mathbb{Z}/N \cong \mathbb{Z}/p_1 \times \ldots \times \mathbb{Z}/p_r$$

- If exists, compute preimage w.r.t injective Farey map.
- Verify correctness of lift.
- This will yield correct result, provided
 - N is large enough s.t. the Q-result is in source of Farey map, and
 - none of the p_i is bad.

Definition

A prime p is called **bad** if the result over \mathbb{Q} does not reduce modulo p to the result over \mathbb{Z}/p .

For $G \subset K[X] = K[x_1, ..., x_n]$ and a monomial ordering >, let LM(G) be the set of lead monomials of G.

Janko Boehm (TU-KL)

For $G \subset K[X] = K[x_1, ..., x_n]$ and a monomial ordering >, let LM(G) be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$G_p := \overline{G} \subset \mathbb{Z}/p[X].$$

For $G \subset K[X] = K[x_1, ..., x_n]$ and a monomial ordering >, let LM(G) be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$G_p := \overline{G} \subset \mathbb{Z}/p[X].$$

Theorem (Arnold, 2003)

Suppose $F = \{f_1, ..., f_r\} \subset \mathbb{Z}[X]$ with f_i primitve,

For $G \subset K[X] = K[x_1, ..., x_n]$ and a monomial ordering >, let LM(G) be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$G_p := \overline{G} \subset \mathbb{Z}/p[X].$$

Theorem (Arnold, 2003)

Suppose $F = \{f_1, ..., f_r\} \subset \mathbb{Z}[X]$ with f_i primitve, and

• *G* is the reduced Gröbner basis of $\langle F \rangle \subset \mathbb{Q}[X]$,

For $G \subset K[X] = K[x_1, ..., x_n]$ and a monomial ordering >, let LM(G) be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$G_p := \overline{G} \subset \mathbb{Z}/p[X].$$

Theorem (Arnold, 2003)

Suppose $F = \{f_1, ..., f_r\} \subset \mathbb{Z}[X]$ with f_i primitve, and

- *G* is the reduced Gröbner basis of $\langle F \rangle \subset \mathbb{Q}[X]$,
- G(p) is the reduced Gröbner basis of $\langle F_p \rangle$, and

For $G \subset K[X] = K[x_1, ..., x_n]$ and a monomial ordering >, let LM(G) be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$G_p := \overline{G} \subset \mathbb{Z}/p[X].$$

Theorem (Arnold, 2003)

Suppose $F = \{f_1, ..., f_r\} \subset \mathbb{Z}[X]$ with f_i primitve, and

- G is the reduced Gröbner basis of $\langle F \rangle \subset \mathbb{Q}[X]$,
- G(p) is the reduced Gröbner basis of $\langle F_p \rangle$, and
- $G_{\mathbb{Z}}$ a minimal strong Gröbnerbasis of $\langle F \rangle \subset \mathbb{Z}[X]$.

For $G \subset K[X] = K[x_1, ..., x_n]$ and a monomial ordering >, let LM(G) be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$G_p := \overline{G} \subset \mathbb{Z}/p [X].$$

Theorem (Arnold, 2003)

Suppose $F = \{f_1, ..., f_r\} \subset \mathbb{Z}[X]$ with f_i primitve, and

- G is the reduced Gröbner basis of $\langle F \rangle \subset \mathbb{Q}[X]$,
- G(p) is the reduced Gröbner basis of $\langle F_p \rangle$, and
- $G_{\mathbb{Z}}$ a minimal strong Gröbnerbasis of $\langle F \rangle \subset \mathbb{Z}[X]$. Then

p does not divide any lead coefficient in $G_{\mathbb{Z}} \iff \text{LM } G = \text{LM } G(p)$ $\iff G_p = G(p)$
For $G \subset K[X] = K[x_1, ..., x_n]$ and a monomial ordering >, let LM(G) be the set of lead monomials of G. For $G \subset \mathbb{Z}[X]$ define

$$G_p := \overline{G} \subset \mathbb{Z}/p [X].$$

Theorem (Arnold, 2003)

Suppose $F = \{f_1, ..., f_r\} \subset \mathbb{Z}[X]$ with f_i primitve, and

- G is the reduced Gröbner basis of $\langle F \rangle \subset \mathbb{Q}[X]$,
- G(p) is the reduced Gröbner basis of $\langle F_p \rangle$, and
- $G_{\mathbb{Z}}$ a minimal strong Gröbnerbasis of $\langle F \rangle \subset \mathbb{Z}[X]$. Then

p does not divide any lead coefficient in $G_{\mathbb{Z}} \iff \text{LM } G = \text{LM } G(p)$ $\iff G_p = G(p)$

that is, p is not bad.

Example

Let

$$f = x^5 + y^{11} + xy^9 + x^3y^9 \in \mathbb{Z}[x, y].$$

Example Let $f = x^5 + y^{11} + xy^9 + x^3y^9 \in \mathbb{Z}[x, y].$ Then $G_{\mathbb{Z}}$ for $\left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle$ w.r.t lp is $264627v^{39} + \dots$ $12103947791971846719838321886393392913750065060875 \times y^8 - \ldots$ $40754032969602177507873137664624218564815033875x^4 + \dots$

Example Let $f = x^5 + y^{11} + xy^9 + x^3y^9 \in \mathbb{Z}[x, y].$ Then $G_{\mathbb{Z}}$ for $\left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle$ w.r.t lp is $264627v^{39} + \dots$ $12103947791971846719838321886393392913750065060875 x v^8 - \dots$ $40754032969602177507873137664624218564815033875x^4 + \dots$ and LM G = LM G(p) for all primes p except p = 3, 5, 11, 809, 65179, 531264751, 431051934846786628615463393.

Bad primes

Classification of bad primes:

• Type 1: Input modulo p not valid (no problem)

< 67 ▶

- Type 1: Input modulo p not valid (no problem)
- Type 2: Failure in the course of the algorithm (e.g. matrix not invertible modulo *p*, wastes computation time if happens)

7 / 26

- Type 1: Input modulo p not valid (no problem)
- Type 2: Failure in the course of the algorithm (e.g. matrix not invertible modulo *p*, wastes computation time if happens)
- Type 3: Computable invariant with known expected value (e.g. Hilbert polynomial) is wrong (have to do expensive test for each prime, although set of bad primes usually is finite)

7 / 26

- Type 1: Input modulo p not valid (no problem)
- Type 2: Failure in the course of the algorithm (e.g. matrix not invertible modulo *p*, wastes computation time if happens)
- Type 3: Computable invariant with known expected value (e.g. Hilbert polynomial) is wrong (have to do expensive test for each prime, although set of bad primes usually is finite)
- Type 4: Computable invariant with unknown expected value (e.g. lead ideal in Gröbner basis computations) is wrong (to detect by a majority vote, have to compute and store value of invariant for all modular results)

- Type 1: Input modulo p not valid (no problem)
- Type 2: Failure in the course of the algorithm (e.g. matrix not invertible modulo *p*, wastes computation time if happens)
- Type 3: Computable invariant with known expected value (e.g. Hilbert polynomial) is wrong (have to do expensive test for each prime, although set of bad primes usually is finite)
- Type 4: Computable invariant with unknown expected value (e.g. lead ideal in Gröbner basis computations) is wrong (to detect by a majority vote, have to compute and store value of invariant for all modular results)
- Type 5: otherwise.

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_p = (I \cap \mathbb{Z}[X])_p$.

Example

Consider the algorithm $I \mapsto \sqrt{I + Jac(I)}$ for

 $I = \langle x^{6} + y^{6} + 7x^{5}z + x^{3}y^{2}z - 31x^{4}z^{2} - 224x^{3}z^{3} + 244x^{2}z^{4} + 1632xz^{5} + 576z^{6} \rangle$

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_p = (I \cap \mathbb{Z}[X])_p$.

Example

Consider the algorithm $I \mapsto \sqrt{I + \operatorname{Jac}(I)}$ for

 $I = \langle x^{6} + y^{6} + 7x^{5}z + x^{3}y^{2}z - 31x^{4}z^{2} - 224x^{3}z^{3} + 244x^{2}z^{4} + 1632xz^{5} + 576z^{6} \rangle$

Then w.r.t dp

$$\mathsf{LM}(I) = \left\langle x^6 \right\rangle = \mathsf{LM}(I_5)$$

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_p = (I \cap \mathbb{Z}[X])_p$.

Example

Consider the algorithm $I \mapsto \sqrt{I + \operatorname{Jac}(I)}$ for

 $I = \langle x^{6} + y^{6} + 7x^{5}z + x^{3}y^{2}z - 31x^{4}z^{2} - 224x^{3}z^{3} + 244x^{2}z^{4} + 1632xz^{5} + 576z^{6} \rangle$

Then w.r.t dp $LM(I) = \langle x^6 \rangle = LM(I_5)$

$$U(0) = \sqrt{I + \operatorname{Jac}(I)} = \langle y, x - 4z \rangle \cap \langle y, x + 6z \rangle$$
$$U(5) = \sqrt{I_5 + \operatorname{Jac}(I_5)} = \langle y, x^2 - z^2 \rangle = \langle y, x - z \rangle \cap \langle y, x + z \rangle$$

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_p = (I \cap \mathbb{Z}[X])_p$.

Example

Consider the algorithm $I \mapsto \sqrt{I + \operatorname{Jac}(I)}$ for

 $I = \langle x^{6} + y^{6} + 7x^{5}z + x^{3}y^{2}z - 31x^{4}z^{2} - 224x^{3}z^{3} + 244x^{2}z^{4} + 1632xz^{5} + 576z^{6} \rangle$

Then w.r.t dp $LM(I) = \langle x^6 \rangle = LM(I_5)$

$$U(0) = \sqrt{I + \operatorname{Jac}(I)} = \langle y, x - 4z \rangle \cap \langle y, x + 6z \rangle$$
$$U(5) = \sqrt{I_5 + \operatorname{Jac}(I_5)} = \langle y, x^2 - z^2 \rangle = \langle y, x - z \rangle \cap \langle y, x + z \rangle$$
$$U(0)_5 = \langle y, (x + z)^2 \rangle$$

For ideal $I \subset \mathbb{Q}[X]$ and prime p define $I_p = (I \cap \mathbb{Z}[X])_p$.

Example

Consider the algorithm $I \mapsto \sqrt{I + \operatorname{Jac}(I)}$ for

 $I = \langle x^{6} + y^{6} + 7x^{5}z + x^{3}y^{2}z - 31x^{4}z^{2} - 224x^{3}z^{3} + 244x^{2}z^{4} + 1632xz^{5} + 576z^{6} \rangle$

Then w.r.t dp $LM(I) = \langle x^6 \rangle = LM(I_5)$

$$U(0) = \sqrt{I + \operatorname{Jac}(I)} = \langle y, x - 4z \rangle \cap \langle y, x + 6z \rangle$$
$$U(5) = \sqrt{I_5 + \operatorname{Jac}(I_5)} = \langle y, x^2 - z^2 \rangle = \langle y, x - z \rangle \cap \langle y, x + z \rangle$$
$$U(0)_5 = \langle y, (x + z)^2 \rangle$$

Hence

$$U(0)_5 \neq U(5)$$

LM $(U(0)) = \langle y, x^2 \rangle = LM(U(5))$

Janko Boehm (TU-KL)

Goal: Reconstruct $\frac{a}{b}$ from $\overline{r} \in \mathbb{Z}/N$ in the presence of bad primes.

Goal: Reconstruct $\frac{a}{b}$ from $\overline{r} \in \mathbb{Z}/N$ in the presence of bad primes. *Idea:* Find (x, y) with $\frac{x}{v} = \frac{a}{b}$ in the lattice

$$\Lambda = \langle (N, 0), (r, 1) \rangle \subset \mathbb{Z}^2$$

Goal: Reconstruct $\frac{a}{b}$ from $\overline{r} \in \mathbb{Z}/N$ in the presence of bad primes. *Idea:* Find (x, y) with $\frac{x}{y} = \frac{a}{b}$ in the lattice

$$\Lambda = \langle (\mathsf{N},\mathsf{0}), (\mathsf{r},1)
angle \subset \mathbb{Z}^2$$

Lemma (BDFP, 2015)

All $(x, y) \in \Lambda$ with $x^2 + y^2 < N$ are collinear.

Goal: Reconstruct $\frac{a}{b}$ from $\overline{r} \in \mathbb{Z}/N$ in the presence of bad primes. *Idea:* Find (x, y) with $\frac{x}{y} = \frac{a}{b}$ in the lattice

$$\Lambda = \langle (\mathsf{N},\mathsf{0}), (\mathsf{r},1)
angle \subset \mathbb{Z}^2$$

Lemma (BDFP, 2015)

All $(x, y) \in \Lambda$ with $x^2 + y^2 < N$ are collinear.

Proof.

Let $\lambda = (x, y)$, $\mu = (c, d) \in \Lambda$ with $x^2 + y^2$, $c^2 + d^2 < N$. Then $y\mu - d\lambda = (yc - xd, 0) \in \Lambda$, so N|(yc - xd). By Cauchy–Schwarz |yc - xd| < N, hence yc = xd.

Goal: Reconstruct $\frac{a}{b}$ from $\overline{r} \in \mathbb{Z}/N$ in the presence of bad primes. *Idea:* Find (x, y) with $\frac{x}{y} = \frac{a}{b}$ in the lattice

$$\Lambda = \langle (\mathsf{N},\mathsf{0}), (\mathsf{r},1)
angle \subset \mathbb{Z}^2$$

Lemma (BDFP, 2015)

All $(x, y) \in \Lambda$ with $x^2 + y^2 < N$ are collinear.

Proof.

Let
$$\lambda = (x, y)$$
, $\mu = (c, d) \in \Lambda$ with $x^2 + y^2$, $c^2 + d^2 < N$. Then $y\mu - d\lambda = (yc - xd, 0) \in \Lambda$, so $N|(yc - xd)$. By Cauchy–Schwarz $|yc - xd| < N$, hence $yc = xd$.

Now suppose

$$N = N' \cdot M$$

with gcd(N', M) = 1.

🗇 🕨 🔺 🖻 🕨 🔺 🖷

Think of N' as the product of the good primes with correct result \overline{s} , and of M as the product of the bad primes with wrong result \overline{t} .

Think of N' as the product of the good primes with correct result \overline{s} , and of M as the product of the bad primes with wrong result \overline{t} .

Theorem (BDFP, 2015)

lf

and

$$\overline{r} \mapsto (\overline{s}, \overline{t})$$
 with respect to $\mathbb{Z}/N \cong \mathbb{Z}/N' \times \mathbb{Z}/M$
 $\frac{a}{b} \equiv s \mod N'$

Think of N' as the product of the good primes with correct result \overline{s} , and of M as the product of the bad primes with wrong result \overline{t} .

Theorem (BDFP, 2015)

If $\overline{r} \mapsto (\overline{s}, \overline{t})$ with respect to $\mathbb{Z}/N \cong \mathbb{Z}/N' \times \mathbb{Z}/M$ and $\frac{a}{b} \equiv s \mod N'$

then $(aM, bM) \in \Lambda$.

Think of N' as the product of the good primes with correct result \overline{s} , and of M as the product of the bad primes with wrong result \overline{t} .

Theorem (BDFP, 2015)

lf $\overline{r} \mapsto (\overline{s}, \overline{t})$ with respect to $\mathbb{Z}/N \cong \mathbb{Z}/N' \times \mathbb{Z}/M$ and $\frac{a}{b} \equiv s \mod N'$ then $(aM, bM) \in \Lambda$. So if $(a^2 + b^2)M < N'.$ then (by the lemma) $\frac{x}{y} = \frac{a}{b}$ for all $(x, y) \in \Lambda$ with $(x^2 + y^2) < N$ and such vectors exist.

Think of N' as the product of the good primes with correct result \overline{s} , and of M as the product of the bad primes with wrong result \overline{t} .

Theorem (BDFP, 2015)

lf

and

$$\overline{r} \mapsto (\overline{s}, \overline{t})$$
 with respect to $\mathbb{Z}/N \cong \mathbb{Z}/N' \times \mathbb{Z}/M$

$$\frac{a}{b} \equiv s \mod N$$

then $(aM, bM) \in \Lambda$. So if

$$(a^2 + b^2)M < N',$$

then (by the lemma)

$$\frac{x}{y} = \frac{a}{b}$$
 for all $(x, y) \in \Lambda$ with $(x^2 + y^2) < N$

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x, y) is a shortest vector $\neq 0$ in Λ , we also have gcd(x, y)|M.

Error tolerant reconstruction via Gauss-Lagrange

Hence, if $N' \gg M$, the Gauss-Lagrange-Algorithm for finding a shortest vector $(x, y) \in \Lambda$ gives $\frac{a}{b}$ independently of t, provided $x^2 + y^2 < N$.

Error tolerant reconstruction via Gauss-Lagrange

Hence, if $N' \gg M$, the Gauss-Lagrange-Algorithm for finding a shortest vector $(x, y) \in \Lambda$ gives $\frac{a}{b}$ independently of t, provided $x^2 + y^2 < N$.

Algorithm (Error tolerant reconstruction)

Input: N and r. **Output:** $\frac{a}{b}$ or false. 1: $(a_0, b_0) := (N, 0), (a_1, b_1) := (r, 1), i := -1$ 2: repeat 3: i = i + 14: $(a_{i+2}, b_{i+2}) = (a_i, b_i) - \left\lfloor \frac{\langle (a_i, b_i), (a_{i+1}, b_{i+1}) \rangle}{\|(a_{i+1}, b_{i+1})\|^2} \right\rfloor (a_{i+1}, b_{i+1})$ 5: until $a_{i+2}^2 + b_{i+2}^2 \ge a_{i+1}^2 + \bar{b}_{i+1}^2$ 6: if $a_{i+1}^2 + b_{i+1}^2 < N$ then 7: return $\frac{a_{i+1}}{b_{i+1}}$ 8: else return false <u>9</u>:

Example

We reconstruct $\frac{13}{12}$ from

 $\overline{22684} \in \mathbb{Z}/38885$

by determining a shortest vector in the lattice

 $\langle (38885,0),(22684,1)
angle \subset \mathbb{Z}^2$

via Gauss-Lagrange

Example

We reconstruct $\frac{13}{12}$ from

 $\overline{22684} \in \mathbb{Z}/38885$

by determining a shortest vector in the lattice

 $\langle (38885,0),(22684,1)
angle \subset \mathbb{Z}^2$

via Gauss-Lagrange

$$\begin{array}{l} (38885,0) = 2 \cdot (22684,1) + (-6483,-2), \\ (22684,1) = -3 \cdot (-6483,-2) + (3235,-5), \\ (-6483,-2) = 2 \cdot (3235,-5) + (-13,-12), \\ (3235,-5) = -134 \cdot (-13,-12) + (1493,-1613). \end{array}$$

Example

Now introduce an error in the modular results:

$$\mathbb{Z}/5 \times \mathbb{Z}/7 \times \mathbb{Z}/11 \times \mathbb{Z}/101 \cong \mathbb{Z}/38885$$

 $(\overline{4}, \overline{4}, \overline{2}, \overline{2}, \overline{60}) \mapsto \overline{22684}$

Example

Now introduce an error in the modular results:

$$\mathbb{Z}/5 \times \mathbb{Z}/7 \times \mathbb{Z}/11 \times \mathbb{Z}/101 \cong \mathbb{Z}/38885 (\overline{4}, \overline{4}, \overline{2}, \overline{2}, \overline{60}) \mapsto \overline{22684} (\overline{4}, \overline{2}, \overline{2}, \overline{2}, \overline{60}) \mapsto \overline{464}$$

Example

Now introduce an error in the modular results:

Error tolerant reconstruction computes

$$(38885, 0) = 84 \cdot (464, 1) + (-91, -84),$$

$$(464, 1) = -3 \cdot (-91, -84) + (191, -251)$$

Example

Now introduce an error in the modular results:

Error tolerant reconstruction computes

$$(38885, 0) = 84 \cdot (464, 1) + (-91, -84),$$

$$(464, 1) = -3 \cdot (-91, -84) + (191, -251)$$

hence yields

$$\frac{91}{84} = \frac{7 \cdot 13}{7 \cdot 12} = \frac{13}{12}.$$

Example

Now introduce an error in the modular results:

Error tolerant reconstruction computes

$$\begin{aligned} (38885,0) &= 84 \cdot (464,1) + (-91,-84), \\ (464,1) &= -3 \cdot (-91,-84) + (191,-251) \end{aligned}$$

hence yields

$$\frac{91}{84} = \frac{7 \cdot 13}{7 \cdot 12} = \frac{13}{12}.$$

Note that

$$(13^2 + 12^2) \cdot 7 = 2191 < 5555 = 5 \cdot 11 \cdot 101.$$

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) U(0) associated to I by deterministic algorithm.

Algorithm

Janko Boehm (TU-KL)

• For I_p compute result U(p) over \mathbb{Z}/p for p in finite set of primes \mathcal{P} .

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) U(0) associated to I by deterministic algorithm.

Algorithm

- For I_p compute result U(p) over \mathbb{Z}/p for p in finite set of primes \mathcal{P} .
- Reduce \mathcal{P} according to majority vote on LM(U(p)).

General reconstruction scheme

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) U(0) associated to I by deterministic algorithm.

Algorithm

- For I_p compute result U(p) over \mathbb{Z}/p for p in finite set of primes \mathcal{P} .
- Reduce \mathcal{P} according to majority vote on LM(U(p)).
- For $N = \prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift U(N) to \mathbb{Z}/N .
Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) U(0) associated to I by deterministic algorithm.

- For I_p compute result U(p) over \mathbb{Z}/p for p in finite set of primes \mathcal{P} .
- Reduce \mathcal{P} according to majority vote on LM(U(p)).
- For $N = \prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift U(N) to \mathbb{Z}/N .
- Lift U(N) by error tolerant rational reconstruction to U.

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) U(0) associated to I by deterministic algorithm.

- For I_p compute result U(p) over \mathbb{Z}/p for p in finite set of primes \mathcal{P} .
- Reduce \mathcal{P} according to majority vote on LM(U(p)).
- For $N = \prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift U(N) to \mathbb{Z}/N .
- Lift U(N) by error tolerant rational reconstruction to U.
- Test $U_p = U(p)$ for random prime p.

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) U(0) associated to I by deterministic algorithm.

- For I_p compute result U(p) over \mathbb{Z}/p for p in finite set of primes \mathcal{P} .
- Reduce \mathcal{P} according to majority vote on LM(U(p)).
- For $N = \prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift U(N) to \mathbb{Z}/N .
- Lift U(N) by error tolerant rational reconstruction to U.
- Test $U_p = U(p)$ for random prime p.
- Verify U = U(0).

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) U(0) associated to I by deterministic algorithm.

- For I_p compute result U(p) over \mathbb{Z}/p for p in finite set of primes \mathcal{P} .
- Reduce \mathcal{P} according to majority vote on LM(U(p)).
- For $N = \prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift U(N) to \mathbb{Z}/N .
- Lift U(N) by error tolerant rational reconstruction to U.
- Test $U_p = U(p)$ for random prime p.
- Verify U = U(0).
- If lift, test or verification fails, then enlarge \mathcal{P} .

Setup: For ideal $I \subset \mathbb{Q}[X]$ compute ideal (or module) U(0) associated to I by deterministic algorithm.

Algorithm

- For I_p compute result U(p) over \mathbb{Z}/p for p in finite set of primes \mathcal{P} .
- Reduce \mathcal{P} according to majority vote on LM(U(p)).
- For $N = \prod_{p \in \mathcal{P}} p$ compute termwise CRT-lift U(N) to \mathbb{Z}/N .
- Lift U(N) by error tolerant rational reconstruction to U.
- Test $U_p = U(p)$ for random prime p.
- Verify U = U(0).
- If lift, test or verification fails, then enlarge \mathcal{P} .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec \mathbb{Z} , then this algorithm terminates with the correct result.

Janko Boehm (TU-KL)

Setup: A = K[X]/I domain.

Definition

The **normalization** \overline{A} of A is the integral closure of A in its quotient field Q(A).

Setup: A = K[X]/I domain.

Definition

The **normalization** \overline{A} of A is the integral closure of A in its quotient field Q(A). We call A **normal** if $A = \overline{A}$.

Setup: A = K[X]/I domain.

Definition

The **normalization** \overline{A} of A is the integral closure of A in its quotient field Q(A). We call A **normal** if $A = \overline{A}$.

Theorem (Noether)

 \overline{A} is a finitely generated A-module.

Setup: A = K[X]/I domain.

Definition

The **normalization** \overline{A} of A is the integral closure of A in its quotient field Q(A). We call A **normal** if $A = \overline{A}$.

Theorem (Noether)

 \overline{A} is a finitely generated A-module.

Example

Curve
$$I = \langle x^3 + x^2 - y^2 \rangle \subset K[x, y]$$

 $A = K[x, y]/I \cong K[t^2 - 1, t^3 - t] \subset K[t] \cong \overline{A}$
 $\overline{x} \mapsto t^2 - 1$
 $\overline{y} \mapsto t^3 - t$

Setup: A = K[X]/I domain.

Definition

The **normalization** \overline{A} of A is the integral closure of A in its quotient field Q(A). We call A **normal** if $A = \overline{A}$.

Theorem (Noether)

 \overline{A} is a finitely generated A-module.

Example

Curve
$$I = \langle x^3 + x^2 - y^2 \rangle \subset K[x, y]$$

 $A = K[x, y]/I \cong K[t^2 - 1, t^3 - t] \subset K[t] \cong \overline{A}$
 $\overline{x} \mapsto t^2 - 1$
 $\overline{y} \mapsto t^3 - t$
As an A-module $\overline{A} = \langle 1, \frac{\overline{y}}{\overline{x}} \rangle$.

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 ×

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

$$\begin{array}{rcccc} A & \hookrightarrow & \operatorname{Hom}_{A}(J,J) & \cong & \frac{1}{g}(gJ:_{A}J) & \subset & \overline{A} \\ a & \mapsto & a \cdot & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & &$$

Image: A math a math

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

$$\begin{array}{rcccc} A & \hookrightarrow & \operatorname{Hom}_{A}(J,J) & \cong & \frac{1}{g}(gJ:_{A}J) & \subset & \overline{A} \\ a & \mapsto & a \cdot & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$$

Algorithm

Starting from $A_0 = A$ and $J_0 = J$,

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

$$\begin{array}{rcccc} A & \hookrightarrow & \operatorname{Hom}_{A}(J,J) & \cong & \frac{1}{g}(gJ:_{A}J) & \subset & \overline{A} \\ a & \mapsto & a \cdot & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & &$$

Algorithm

Starting from $A_0 = A$ and $J_0 = J$, setting

$$A_{i+1} = \frac{1}{g}(gJ_i :_{A_i} J_i) \qquad J_i = \sqrt{JA_i}$$

Lemma

If $J \subset A$ is an ideal and $0 \neq g \in J$, then

$$\begin{array}{rcccc} A & \hookrightarrow & \operatorname{Hom}_{A}(J,J) & \cong & \frac{1}{g}(gJ:_{A}J) & \subset & \overline{A} \\ a & \mapsto & a \cdot & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & &$$

Algorithm

Starting from $A_0 = A$ and $J_0 = J$, setting

$$A_{i+1} = \frac{1}{g}(gJ_i :_{A_i} J_i) \qquad J_i = \sqrt{JA_i}$$

we get a chain of extensions of reduced Noetherian rings

$$A = A_0 \subset \cdots \subset A_i \subset \cdots \subset A_m = A_{m+1}.$$

Terminates since A is Noetherian.

Janko Boehm (TU-KL)

Non-normal locus N(A) is contained in **singular locus** Sing(A).

Non-normal locus N(A) is contained in **singular locus** Sing(A).

Theorem (Grauert-Remmert)

Janko Boehm (TU-KL)

Let $0 \neq J \subset A$ be an ideal with $J = \sqrt{J}$

Non-normal locus N(A) is contained in **singular locus** Sing(A).

Theorem (Grauert-Remmert)

Janko Boehm (TU-KL)

Let $0 \neq J \subset A$ be an ideal with $J = \sqrt{J}$ and $N(A) \subset V(J).$

Non-normal locus N(A) is contained in **singular locus** Sing(A).

Theorem (Grauert-Remmert)

Let $0 \neq J \subset A$ be an ideal with $J = \sqrt{J}$ and $N(A) \subset V(J)$.

Then A is normal iff the inclusion

 $\begin{array}{rccc} A & \hookrightarrow & \operatorname{Hom}_{A}(J,J) \\ a & \mapsto & a \end{array}$

is an isomorphism.

Janko Boehm (TU-KL)

Non-normal locus N(A) is contained in **singular locus** Sing(A).

Theorem (Grauert-Remmert)

Let $0 \neq J \subset A$ be an ideal with $J = \sqrt{J}$ and $N(A) \subset V(J)$.

Then A is normal iff the inclusion

 $\begin{array}{rccc} A & \hookrightarrow & \operatorname{Hom}_A(J,J) \\ a & \mapsto & a \cdot \end{array}$

is an isomorphism.

 \implies For $J = \sqrt{\operatorname{Jac}(I)}$ algorithm terminates with $A_m = A_{m+1} = \overline{A}$,

Non-normal locus N(A) is contained in **singular locus** Sing(A).

Theorem (Grauert-Remmert)

Let $0 \neq J \subset A$ be an ideal with $J = \sqrt{J}$ and $N(A) \subset V(J)$.

Then A is normal iff the inclusion

 $\begin{array}{rccc} A & \hookrightarrow & \operatorname{Hom}_A(J,J) \\ a & \mapsto & a \cdot \end{array}$

is an isomorphism.

 \implies For $J = \sqrt{\operatorname{Jac}(I)}$ algorithm terminates with $A_m = A_{m+1} = \overline{A}$, since:

Lemma $N(A_i) \subset V(\sqrt{JA_i})$ Janko Boehm (TU-KL)Modular Computations in Algebraic Geometry01 October 201517 / 26

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose

 $Sing(A) = \{P_1, \dots, P_r\}$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Theorem (BDLSS, 2011)

Suppose

$$\mathsf{Sing}(A) = \{P_1, \ldots, P_r\}$$

and

$$A \subset B_i \subset \overline{A}$$

is the ring given by the normalization algorithm applied to P_i instead of J

- ∢ 🗇 እ

э

Theorem (BDLSS, 2011)

Suppose

$$\mathsf{Sing}(A) = \{P_1, \ldots, P_r\}$$

and

$$A \subset B_i \subset \overline{A}$$

is the ring given by the normalization algorithm applied to P_i instead of J. Then

$$(B_i)_{P_i} = \overline{A_{P_i}}$$

 $(B_i)_Q = A_Q$ for all $P_i \neq Q \in \operatorname{Spec} A_i$

э

Image: A matrix

Theorem (BDLSS, 2011)

Suppose

$$\mathsf{Sing}(A) = \{P_1, \dots, P_r\}$$

and

$$A \subset B_i \subset \overline{A}$$

is the ring given by the normalization algorithm applied to P_i instead of J. Then

$$(B_i)_{P_i} = \overline{A_{P_i}}$$

 $(B_i)_Q = A_Q$ for all $P_i \neq Q \in \operatorname{Spec} A$,

and

$$\overline{A}=B_1+\ldots+B_r.$$

We call B_i the minimal local contribution to \overline{A} at P_i .

Janko Boehm (TU-KL)

Setup: $\Gamma \subset \mathbb{P}^r$ integral, non-degenerate projective curve, $\pi : \overline{\Gamma} \to \Gamma$ normalization map, $I(\Gamma) \subsetneqq I \subset k[x_0, ..., x_r]$ saturated homogeneous ideal.

Setup: $\Gamma \subset \mathbb{P}^r$ integral, non-degenerate projective curve, $\pi : \overline{\Gamma} \to \Gamma$ normalization map, $I(\Gamma) \subsetneq I \subset k[x_0, ..., x_r]$ saturated homogeneous ideal. Let H be pullback of hyperplane, $\Delta(I)$ pullback of $\operatorname{Proj}(S/I)$.

Setup: $\Gamma \subset \mathbb{P}^r$ integral, non-degenerate projective curve, $\pi : \overline{\Gamma} \to \Gamma$ normalization map, $I(\Gamma) \subsetneqq I \subset k[x_0, ..., x_r]$ saturated homogeneous ideal. Let H be pullback of hyperplane, $\Delta(I)$ pullback of $\operatorname{Proj}(S/I)$. Then

$$0 \to \widetilde{I}\mathcal{O}_{\Gamma} \to \pi_*(\widetilde{I}\mathcal{O}_{\overline{\Gamma}}) \to \mathcal{F} \to 0$$

Setup: $\Gamma \subset \mathbb{P}^r$ integral, non-degenerate projective curve, $\pi : \overline{\Gamma} \to \Gamma$ normalization map, $I(\Gamma) \subsetneqq I \subset k[x_0, ..., x_r]$ saturated homogeneous ideal. Let H be pullback of hyperplane, $\Delta(I)$ pullback of $\operatorname{Proj}(S/I)$. Then

$$0 \to \widetilde{I}\mathcal{O}_{\Gamma} \to \pi_*(\widetilde{I}\mathcal{O}_{\overline{\Gamma}}) \to \mathcal{F} \to 0$$

gives for $m \gg 0$ linear maps

$$0 \to I_m/I(\Gamma)_m \stackrel{\overline{\varrho_m}}{\to} H^0\left(\overline{\Gamma}, \mathcal{O}_{\overline{\Gamma}}\left(mH - \Delta(I)\right)\right) \to H^0\left(\Gamma, \mathcal{F}\right) \to 0$$

Definition

I is an **adjoint ideal** of Γ if $\overline{\varrho_m}$ surjective for $m \gg 0$.

Setup: $\Gamma \subset \mathbb{P}^r$ integral, non-degenerate projective curve, $\pi : \overline{\Gamma} \to \Gamma$ normalization map, $I(\Gamma) \subsetneqq I \subset k[x_0, ..., x_r]$ saturated homogeneous ideal. Let H be pullback of hyperplane, $\Delta(I)$ pullback of $\operatorname{Proj}(S/I)$. Then

$$0 \to \widetilde{I}\mathcal{O}_{\Gamma} \to \pi_*(\widetilde{I}\mathcal{O}_{\overline{\Gamma}}) \to \mathcal{F} \to 0$$

gives for $m \gg 0$ linear maps

$$0 \to I_m/I(\Gamma)_m \stackrel{\overline{\varrho_m}}{\to} H^0\left(\overline{\Gamma}, \mathcal{O}_{\overline{\Gamma}}\left(mH - \Delta(I)\right)\right) \to H^0\left(\Gamma, \mathcal{F}\right) \to 0$$

Definition

I is an **adjoint ideal** of Γ if $\overline{\varrho_m}$ surjective for $m \gg 0$.

$$h^{0}(\Gamma, \mathcal{F}) = \sum_{P \in \operatorname{Sing}(\Gamma)} \ell(I_{P}\overline{\mathcal{O}_{\Gamma,P}}/I_{P}) \implies$$

Theorem

$$I \text{ adjoint } \iff I_P \overline{\mathcal{O}_{\Gamma,P}} = I_P \text{ for all } P \in \operatorname{Sing}(\Gamma)$$

Conductor is largest ideal with this property.

Janko Boehm (TU-KL)

Modular Computations in Algebraic Geometry

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal $\mathfrak{G} \subset K[x_0, \dots, x_r]$ with

$$\mathfrak{G}_P = \mathcal{C}_{\mathcal{O}_{\Gamma,P}}$$
 for all $P \in \operatorname{Sing}(\Gamma)$.

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal $\mathfrak{G} \subset K[x_0, \dots, x_r]$ with

$$\mathfrak{G}_P = \mathcal{C}_{\mathcal{O}_{\Gamma,P}}$$
 for all $P \in \operatorname{Sing}(\Gamma)$.

Applications:

Example

If Γ is plane curve of degree *n*, then \mathfrak{G}_{n-3} cuts out canonical linear series.

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal $\mathfrak{G} \subset K[x_0, \dots, x_r]$ with

$$\mathfrak{G}_P = \mathcal{C}_{\mathcal{O}_{\Gamma,P}}$$
 for all $P \in \operatorname{Sing}(\Gamma)$.

Applications:

Example

If Γ is plane curve of degree *n*, then \mathfrak{G}_{n-3} cuts out canonical linear series.

Example

If Γ is plane rational of degree *n* then \mathfrak{G}_{n-2} maps Γ to rational normal curve of degree n-2 in \mathbb{P}^{n-2} .

20 / 26

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal $\mathfrak{G} \subset K[x_0, \dots, x_r]$ with

$$\mathfrak{G}_P = \mathcal{C}_{\mathcal{O}_{\Gamma,P}}$$
 for all $P \in \operatorname{Sing}(\Gamma)$.

Applications:

Example

If Γ is plane curve of degree *n*, then \mathfrak{G}_{n-3} cuts out canonical linear series.

Example

If Γ is plane rational of degree *n* then \mathfrak{G}_{n-2} maps Γ to rational normal curve of degree n-2 in \mathbb{P}^{n-2} .

Example

Brill-Noether-Algorithm for computing Riemann-Roch spaces.

Janko Boehm (TU-KL)

Example

Minimal generators of \mathfrak{G} for rational curve of degree 5:

э

Image: A mathematical states and a mathem

Example

Minimal generators of \mathfrak{G} for rational curve of degree 5:

э
Janko Boehm (TU-KL)

Minimal generators of \mathfrak{G} for rational curve of degree 5:

Minimal generators of \mathfrak{G} for rational curve of degree 5:

Minimal generators of \mathfrak{G} for rational curve of degree 5:

Local-to-global algorithm

Definition

The **local adjoint ideal** of Γ at $P \in \text{Sing } \Gamma$ is the largest homogeneous ideal $\mathfrak{G}(P) \subset k[x_0, \dots, x_r]$ with

$$\mathfrak{G}(P)_P = \mathcal{C}_{\mathcal{O}_{\Gamma,P}}$$

Local-to-global algorithm

Definition

The **local adjoint ideal** of Γ at $P \in \text{Sing } \Gamma$ is the largest homogeneous ideal $\mathfrak{G}(P) \subset k[x_0, \dots, x_r]$ with

$$\mathfrak{G}(P)_P = \mathcal{C}_{\mathcal{O}_{\Gamma,P}}$$

Lemma (BDLP, 2015)

$$\mathfrak{G} = {\textstyle\bigcap}_{P \in \operatorname{Sing} \Gamma} \mathfrak{G}(P)$$

The $\mathfrak{G}(P)$ can be computed in parallel via normalization.

3

Local-to-global algorithm

Definition

The **local adjoint ideal** of Γ at $P \in \text{Sing } \Gamma$ is the largest homogeneous ideal $\mathfrak{G}(P) \subset k[x_0, \dots, x_r]$ with

$$\mathfrak{G}(P)_P = \mathcal{C}_{\mathcal{O}_{\Gamma,P}}$$

Lemma (BDLP, 2015)

$$\mathfrak{G} = \bigcap_{P \in \operatorname{Sing} \Gamma} \mathfrak{G}(P)$$

The $\mathfrak{G}(P)$ can be computed in parallel via normalization.

Algorithm (BDLP, 2015)

If $\frac{1}{d}U$ is the minimal local contribution at P then

$$\mathfrak{G}(P) = (d:U)^h$$

Compute $T_j = T + O(j+1)$ inductively.

24 / 26

Compute $T_j = T + O(j+1)$ inductively.

Lemma

If
$$P = (0, 0)$$
 is of type A_n and $s = \lfloor \frac{n+1}{2} \rfloor$, then
 $\mathfrak{G}(P) = \langle x^s, T_{s-1}, y^s \rangle^h \subset \mathbb{C}[x, y, z]$

Compute $T_j = T + O(j+1)$ inductively.

Lemma

If
$$P = (0,0)$$
 is of type A_n and $s = \lfloor \frac{n+1}{2} \rfloor$, then
 $\mathfrak{G}(P) = \langle x^s, T_{s-1}, y^s \rangle^h \subset \mathbb{C}[x, y, z]$

Similar results for D_n , E_n and other singularities in Arnold's list.

Example

$$f = x^4 - y^2 + x^5$$
 with A_3 singularity. Then $\mathfrak{G}(P) = \langle x^2, y \rangle$.

Applying the general modular strategy gives two-fold parallel algorithm.

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_p defined by $I(\Gamma)_p$.

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_p defined by $I(\Gamma)_p$. Verification?

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_p defined by $I(\Gamma)_p$. Verification?

Theorem (Arbarello, Ciliberto, 1983, Chiarli, 1984)

Let $I(\Gamma) \subseteq I \subset k[x_0, \dots, x_r]$ be saturated homogeneous. Then

 $\deg \Delta(I) \leq \deg I + \delta(\Gamma),$

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_p defined by $I(\Gamma)_p$. Verification?

Theorem (Arbarello, Ciliberto, 1983, Chiarli, 1984)

Let $I(\Gamma) \subseteq I \subset k[x_0, \dots, x_r]$ be saturated homogeneous. Then

 $\deg \Delta(I) \leq \deg I + \delta(\Gamma),$

and I is an adjoint ideal of Γ iff

 $\deg \Delta(I) = \deg I + \delta(\Gamma).$

Applying the general modular strategy gives two-fold parallel algorithm. Use primes p such that algorithm is applicable to Γ_p defined by $I(\Gamma)_p$. Verification?

Theorem (Arbarello, Ciliberto, 1983, Chiarli, 1984)

Let $I(\Gamma) \subseteq I \subset k[x_0, ..., x_r]$ be saturated homogeneous. Then

 $\deg \Delta(I) \leq \deg I + \delta(\Gamma),$

and I is an adjoint ideal of Γ iff

 $\deg \Delta(I) = \deg I + \delta(\Gamma).$

Theorem (BDLP, 2015, corollary to Lipman, 2006)

 $\delta(\Gamma) \leq \delta(\Gamma_p)$

and δ -constant flat family admits a simultaneous normalization.

Janko Boehm (TU-KL)

Modular Computations in Algebraic Geometry

Janko Boehm (TU-KL)

 $\widetilde{d}(g) = \deg(\operatorname{divisor} \operatorname{cut} \operatorname{out} \operatorname{by} g \operatorname{away} \operatorname{from} \operatorname{Sing}(\Gamma)).$

Image: A matrix and a matrix

3

$\widetilde{d}(g) = \deg(\operatorname{divisor} \operatorname{cut} \operatorname{out} \operatorname{by} g \operatorname{away} \operatorname{from} \operatorname{Sing}(\Gamma)).$

Theorem (BDLP, 2015)

$$LM(I(\Gamma_p)) = LM(I(\Gamma))$$

$\widetilde{d}(g) = \deg(\operatorname{divisor} \operatorname{cut} \operatorname{out} \operatorname{by} g \operatorname{away} \operatorname{from} \operatorname{Sing}(\Gamma)).$

Theorem (BDLP, 2015)

- $LM(I(\Gamma_p)) = LM(I(\Gamma))$
- **2** $G_p = G(p)$ is reduced Gröbner basis of an adjoint ideal of Γ_p

$\widetilde{d}(g) = \deg(\operatorname{divisor} \operatorname{cut} \operatorname{out} \operatorname{by} g \operatorname{away} \operatorname{from} \operatorname{Sing}(\Gamma)).$

Theorem (BDLP, 2015)

- $\mathbf{I} \mathsf{LM}(I(\Gamma_p)) = \mathsf{LM}(I(\Gamma))$
- **2** $G_p = G(p)$ is reduced Gröbner basis of an adjoint ideal of Γ_p
- $\ \ \, {\widetilde d}(g_{\rho})=(\deg\Gamma)\cdot m-\deg I_{\rho}-\delta(\Gamma)$

$\widetilde{d}(g) = \deg(\operatorname{divisor} \operatorname{cut} \operatorname{out} \operatorname{by} g \operatorname{away} \operatorname{from} \operatorname{Sing}(\Gamma)).$

Theorem (BDLP, 2015)

$$\mathbf{IM}(I(\Gamma_p)) = \mathbf{LM}(I(\Gamma))$$

2
$$G_p = G(p)$$
 is reduced Gröbner basis of an adjoint ideal of Γ_p

$$i \ \widetilde{d}(g_p) = (\deg \Gamma) \cdot m - \deg I_p - \delta(\Gamma)$$

•
$$|mH - \Delta(I_p)|$$
 is non-special

$$\widetilde{d}(g) = \deg(\operatorname{divisor} \operatorname{cut} \operatorname{out} \operatorname{by} g \operatorname{away} \operatorname{from} \operatorname{Sing}(\Gamma)).$$

Theorem (BDLP, 2015)

Let $I \subset k[x_0, ..., x_r]$ be saturated homogeneous with $I(\Gamma) \subsetneq I$ and suppose G is reduced Gröbner basis of I. If p is a prime and $g \in I$ is homogeneous of degree m such that

$$LM(I(\Gamma_p)) = LM(I(\Gamma))$$

2 $G_p = G(p)$ is reduced Gröbner basis of an adjoint ideal of Γ_p

$$\widetilde{d}(g_p) = (\deg \Gamma) \cdot m - \deg I_p - \delta(\Gamma)$$

•
$$|mH - \Delta(I_p)|$$
 is non-special

then

$$\begin{split} \deg \Delta(I) &= \deg \Delta(I_{\rho}) = (\deg \Gamma) \cdot m - \widetilde{d}(g_{\rho}) \\ \delta(\Gamma) &= \delta(\Gamma_{\rho}) \end{split}$$

and I is an adjoint ideal.

Plane curve f_n of degree *n* with $\binom{n-1}{2}$ singularities of type A_1 .

Plane curve f_n of degree *n* with $\binom{n-1}{2}$ singularities of type A_1 .

	parallel	probablisitic	f ₅		f ₆		f ₇	
locNormal			2.1		56		-	
Maple-IB			5.1		47		318	
LA			98		4400		-	
IQ			1.3		54		3800	
locIQ			1.3	(1)	54	(1)	3800	(1)
ADE			.18	(1)	1.2	(1)	49	(1)
modLocIQ			6.4	[33]	19	[53]	150	[75]
			6.2	[33]	18	[53]	104	[75]
			.36	(74)	1.6	(153)	51	(230)
			.21	(74)	0.48	(153)	5.2	(230)

[primes] (cores)

Janko Boehm (TU-KL)

Plane curve $f_{n,d}$ of degree d with one singularity of type D_n . Curves h_1 , h_2 of degree 20 and 28 in \mathbb{P}^5 .

Plane curve $f_{n,d}$ of degree d with one singularity of type D_n . Curves h_1 , h_2 of degree 20 and 28 in \mathbb{P}^5 .

	parallel	probablisitic	f _{50,500}		f _{400,500}		h ₁		h ₂	
locNormal			.67		4.9		21		-	
Maple-IB			1830		-		N/A		N/A	
LA			-		-		N/A		N/A	
IQ			.67		5.0		30		-	
locIQ			.67	(1)	5.0	(1)	7.5	(6)	-	
ADE			.58	(1)	5.0	(1)	N/A		N/A	
modLocIQ			1.5	[2]	24	[2]	27	[3]	2600	[5]
			.77	(2)	17	(2)	4.0	[27]	59	(69)

[primes] (cores)

References

- J. Boehm, W. Decker, C. Fieker, G. Pfister. *The use of bad primes in rational reconstruction*, Math. Comp. 84 (2015).
- J. Boehm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, S. Steidel. *Parallel algorithms for normalization*, J. Symb. Comp. 51 (2013).
- J. Boehm, W. Decker, G. Pfister, S. Laplagne. *Local to global algorithms for the Gorenstein adjoint ideal of a curve*, arXiv:1505.05040.
- J. Boehm, W. Decker, G. Pfister, S. Laplagne. *adjointideal.lib. A Singular 4 library for computing adjoint ideals*, SINGULAR distribution.
- P. Kornerup, R. T. Gregory, *Mapping integers and Hensel codes onto Farey fractions*, BIT 23 (1983).
- E. Arnold, *Modular algorithms for computing Gröbner bases*, J. Symb. Comp. 35 (2003).

G.-M. Greuel, S. Laplagne, S. Seelisch, *Normalization of rings*, J. Symb. Comp. (2010).