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Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.
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Outline

Modular computations and rational reconstruction

Bad primes

Error tolerant lifting

General reconstruction scheme

Normalization

Local-to-global algorithm for adjoint ideals

Modular version and verification
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Modular computations

Example

Compute
3

4
+

1

3
=

13

12

using modular techniques:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

3
4 7→ ( 2 , 6 , 9 , 26 )

+

1
3 7→ ( 2 , 5 , 4 , 34 )

q

( 4 , 4 , 2 , 60 ) 7→ 22684

How to obtain a rational number from 22684?
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Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b,N) = 1

|a| , |b| ≤
√
(N − 1)/2

}
−→ Z/N

a
b 7−→ a · b−1

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b, 38885) = 1

|a| , |b| ≤ 139

}
−→ Z/38885

13
12 7−→ 22684
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Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.
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Bad primes in Gröbner basis computations

For G ⊂ K [X ] = K [x1, . . . , xn] and a monomial ordering >, let LM(G ) be
the set of lead monomials of G .

For G ⊂ Z[X ] define

Gp := G ⊂ Z/p [X ].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X ] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X ],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X ]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.
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G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X ],

G (p) is the reduced Gröbner basis of 〈Fp〉, and
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Bad primes in Gröbner basis computations

Example

Let
f = x5 + y11 + xy9 + x3y9 ∈ Z[x , y ].

Then GZ for 〈
∂f

∂x
,

∂f

∂y

〉
w.r.t lp is

264627y39 + . . . ,

12103947791971846719838321886393392913750065060875xy8 − . . . ,

40754032969602177507873137664624218564815033875x4 + . . . .

and LMG = LMG (p) for all primes p except

p = 3, 5, 11, 809, 65179, 531264751, 431051934846786628615463393.
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Bad primes

Classification of bad primes:

Type 1: Input modulo p not valid (no problem)

Type 2: Failure in the course of the algorithm (e.g. matrix not
invertible modulo p, wastes computation time if happens)

Type 3: Computable invariant with known expected value (e.g.
Hilbert polynomial) is wrong (have to do expensive test for each
prime, although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute and store value of invariant for all
modular results)

Type 5: otherwise.
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prime, although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute and store value of invariant for all
modular results)

Type 5: otherwise.
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lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute and store value of invariant for all
modular results)

Type 5: otherwise.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 7 / 26



Bad primes

Classification of bad primes:

Type 1: Input modulo p not valid (no problem)

Type 2: Failure in the course of the algorithm (e.g. matrix not
invertible modulo p, wastes computation time if happens)

Type 3: Computable invariant with known expected value (e.g.
Hilbert polynomial) is wrong (have to do expensive test for each
prime, although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
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Example of type 5 bad prime

For ideal I ⊂ Q[X ] and prime p define Ip = (I ∩Z[X ])p.

Example

Consider the algorithm I 7→
√

I + Jac(I ) for

I =
〈
x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6

〉

Then w.r.t dp LM(I ) =
〈
x6
〉
= LM(I5)

U(0) =
√

I + Jac(I ) = 〈y , x − 4z〉 ∩ 〈y , x + 6z〉

U(5) =
√

I5 + Jac(I5) =
〈
y , x2 − z2

〉
= 〈y , x − z〉 ∩ 〈y , x + z〉

U(0)5 =
〈
y , (x + z)2

〉
Hence

U(0)5 6= U(5)

LM(U(0)) =
〈
y , x2

〉
= LM(U(5))
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Error tolerant reconstruction

Goal: Reconstruct a
b from r ∈ Z/N in the presence of bad primes.

Idea: Find (x , y) with x
y = a

b in the lattice

Λ = 〈(N, 0), (r , 1)〉 ⊂ Z2

Lemma (BDFP, 2015)

All (x , y) ∈ Λ with x2 + y2 < N are collinear.

Proof.

Let λ = (x , y), µ = (c, d) ∈ Λ with x2 + y2, c2 + d2 < N. Then
yµ− dλ = (yc − xd , 0) ∈ Λ, so N |(yc − xd). By Cauchy–Schwarz
|yc − xd | < N, hence yc = xd .

Now suppose
N = N ′ ·M

with gcd(N ′,M) = 1.
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Error tolerant reconstruction

Think of N ′ as the product of the good primes with correct result s,
and of M as the product of the bad primes with wrong result t.

Theorem (BDFP, 2015)

If
r 7→ (s, t) with respect to Z/N ∼= Z/N ′ ×Z/M

and a

b
≡ s modN ′

then (aM, bM) ∈ Λ. So if

(a2 + b2)M < N ′,

then (by the lemma)

x

y
=

a

b
for all (x , y) ∈ Λ with (x2 + y2) < N

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x , y) is a shortest
vector 6= 0 in Λ, we also have gcd(x , y)|M.
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Error tolerant reconstruction via Gauss-Lagrange

Hence, if N ′ � M, the Gauss-Lagrange-Algorithm for finding a shortest
vector (x , y) ∈ Λ gives a

b independently of t, provided x2 + y2 < N.

Algorithm (Error tolerant reconstruction)

Input: N and r .
Output: a

b or false.
1: (a0, b0) := (N, 0), (a1, b1) := (r , 1), i := −1
2: repeat
3: i = i + 1

4: (ai+2, bi+2) = (ai , bi )−
⌊
〈(ai , bi ), (ai+1, bi+1)〉
‖(ai+1, bi+1)‖2

⌉
(ai+1, bi+1)

5: until a2i+2 + b2i+2 ≥ a2i+1 + b2i+1

6: if a2i+1 + b2i+1 < N then
7: return ai+1

bi+1

8: else
9: return false
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Reconstruction via Gauss-Lagrange

Example

We reconstruct 13
12 from

22684 ∈ Z/38885

by determining a shortest vector in the lattice

〈(38885, 0), (22684, 1)〉 ⊂ Z2

via Gauss-Lagrange

(38885, 0) = 2 · (22684, 1) + (−6483,−2),

(22684, 1) = −3 · (−6483,−2) + (3235,−5),

(−6483,−2) = 2 · (3235,−5) + (−13,−12),

(3235,−5) = −134 · (−13,−12) + (1493,−1613).
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Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

( 4 , 4 , 2 , 60 ) 7→ 22684

( 4 , 2 , 2 60 ) 7→ 464

Error tolerant reconstruction computes

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251)

hence yields
91

84
=

7 · 13

7 · 12
=

13

12
.

Note that
(132 + 122) · 7 = 2191 < 5555 = 5 · 11 · 101.
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General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec Z, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 14 / 26



General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec Z, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 14 / 26



General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec Z, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 14 / 26



General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec Z, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 14 / 26



General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec Z, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 14 / 26



General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec Z, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 14 / 26



General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec Z, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 14 / 26



General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the bad primes form a Zariski closed true subset of Spec Z, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 14 / 26



Normalization

Setup: A = K [X ]/I domain.

Definition

The normalization A of A is the integral closure of A in its quotient field
Q(A).

We call A normal if A = A.

Theorem (Noether)

A is a finitely generated A-module.

Example

Curve I =
〈
x3 + x2 − y2

〉
⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= A
x 7→ t2 − 1
y 7→ t3 − t

As an A-module A =
〈

1, y
x

〉
.
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Normalization

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1
g (gJ :A J) ⊂ A

a 7→ a·
ϕ 7→ ϕ(g )

g

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =
1
g (gJi :Ai

Ji ) Ji =
√
JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1.

Terminates since A is Noetherian.
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Grauert-Remmert criterion

Non-normal locus N(A) is contained in singular locus Sing(A).

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A be an ideal with J =
√
J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ a·

is an isomorphism.

=⇒ For J =
√

Jac(I ) algorithm terminates with Am = Am+1 = A, since:

Lemma

N(Ai ) ⊂ V (
√
JAi )
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Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose
Sing(A) = {P1, . . . ,Pr}

and
A ⊂ Bi ⊂ A

is the ring given by the normalization algorithm applied to Pi instead of J.
Then

(Bi )Pi
= APi

(Bi )Q = AQ for all Pi 6= Q ∈ SpecA,

and
A = B1 + . . . + Br .

We call Bi the minimal local contribution to A at Pi .
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Adjoint ideals

Setup: Γ ⊂ Pr integral, non-degenerate projective curve, π : Γ→ Γ
normalization map, I (Γ) $ I ⊂ k [x0, ..., xr ] saturated homogeneous ideal.

Let H be pullback of hyperplane, ∆(I ) pullback of Proj(S/I ). Then

0→ ĨOΓ → π∗(ĨOΓ)→ F → 0
gives for m� 0 linear maps

0→ Im/I (Γ)m
$m→ H0

(
Γ,OΓ (mH − ∆(I ))

)
→ H0 (Γ,F )→ 0

Definition

I is an adjoint ideal of Γ if $m surjective for m� 0.

h0 (Γ,F ) = ∑P∈Sing(Γ) `(IPOΓ,P/IP) =⇒

Theorem

I adjoint ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

Conductor is largest ideal with this property.
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0→ ĨOΓ → π∗(ĨOΓ)→ F → 0
gives for m� 0 linear maps

0→ Im/I (Γ)m
$m→ H0

(
Γ,OΓ (mH − ∆(I ))

)
→ H0 (Γ,F )→ 0

Definition

I is an adjoint ideal of Γ if $m surjective for m� 0.

h0 (Γ,F ) = ∑P∈Sing(Γ) `(IPOΓ,P/IP) =⇒

Theorem

I adjoint ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

Conductor is largest ideal with this property.

Janko Boehm (TU-KL) Modular Computations in Algebraic Geometry 01 October 2015 19 / 26



Adjoint ideals

Setup: Γ ⊂ Pr integral, non-degenerate projective curve, π : Γ→ Γ
normalization map, I (Γ) $ I ⊂ k [x0, ..., xr ] saturated homogeneous ideal.
Let H be pullback of hyperplane, ∆(I ) pullback of Proj(S/I ). Then
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Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal
G ⊂ K [x0, . . . , xr ] with

GP = COΓ,P for all P ∈ Sing(Γ).

Applications:

Example

If Γ is plane curve of degree n, then Gn−3 cuts out canonical linear series.

Example

If Γ is plane rational of degree n then Gn−2 maps Γ to rational normal
curve of degree n− 2 in Pn−2.

Example

Brill-Noether-Algorithm for computing Riemann-Roch spaces.
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Example

Minimal generators of G for rational curve of degree 5:
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Example
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Local-to-global algorithm

Definition

The local adjoint ideal of Γ at P ∈ Sing Γ is the largest homogeneous
ideal G(P) ⊂ k [x0, . . . , xr ] with

G(P)P = COΓ,P

Lemma (BDLP, 2015)

G =
⋂

P∈Sing Γ
G(P)

The G(P) can be computed in parallel via normalization.

Algorithm (BDLP, 2015)

If 1
dU is the minimal local contribution at P then

G(P) = (d : U)h
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Special types of singularities

If Γ ⊂ P2 has a singularity of type An at P = (0 : 0 : 1), then given by

f = T 2 +W n+1 with T ,W ∈ C[[x , y ]].

Compute Tj = T +O(j + 1) inductively.

Lemma

If P = (0, 0) is of type An and s =
⌊
n+1
2

⌋
, then

G(P) = 〈x s , Ts−1, y s〉h ⊂ C[x , y , z ]

Similar results for Dn, En and other singularities in Arnold’s list.

Example

f = x4 − y2 + x5 with A3 singularity. Then G(P) =
〈
x2, y

〉
.
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Lemma

If P = (0, 0) is of type An and s =
⌊
n+1
2

⌋
, then

G(P) = 〈x s , Ts−1, y s〉h ⊂ C[x , y , z ]

Similar results for Dn, En and other singularities in Arnold’s list.

Example

f = x4 − y2 + x5 with A3 singularity. Then G(P) =
〈
x2, y

〉
.
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Modular version of the algorithm

Applying the general modular strategy gives two-fold parallel algorithm.

Use primes p such that algorithm is applicable to Γp defined by I (Γ)p.
Verification?

Theorem (Arbarello, Ciliberto, 1983, Chiarli, 1984)

Let I (Γ) $ I ⊂ k [x0, . . . , xr ] be saturated homogeneous. Then

deg ∆(I ) ≤ deg I + δ(Γ),

and I is an adjoint ideal of Γ iff

deg ∆(I ) = deg I + δ(Γ).

Theorem (BDLP, 2015, corollary to Lipman, 2006)

δ(Γ) ≤ δ(Γp)

and δ-constant flat family admits a simultaneous normalization.
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Verification

d̃(g) = deg(divisor cut out by g away from Sing(Γ)).

Theorem (BDLP, 2015)

Let I ⊂ k [x0, . . . , xr ] be saturated homogeneous with I (Γ) $ I and
suppose G is reduced Gröbner basis of I . If p is a prime and g ∈ I is
homogeneous of degree m such that

1 LM(I (Γp)) = LM(I (Γ))
2 Gp = G (p) is reduced Gröbner basis of an adjoint ideal of Γp

3 d̃(gp) = (deg Γ) ·m− deg Ip − δ(Γ)
4 |mH − ∆(Ip)| is non-special

then
deg ∆(I ) = deg ∆(Ip) = (deg Γ) ·m− d̃(gp)

δ(Γ) = δ(Γp)

and I is an adjoint ideal.
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Timings in Singular

Plane curve fn of degree n with (n−12 ) singularities of type A1.

p
ar

al
le

l

pr
ob

ab
lis

it
ic

f5 f6 f7

locNormal 2.1 56 -
Maple-IB 5.1 47 318

LA 98 4400 -
IQ 1.3 54 3800
locIQ � 1.3 (1) 54 (1) 3800 (1)
ADE � .18 (1) 1.2 (1) 49 (1)

modLocIQ 6.4 [33] 19 [53] 150 [75]
� 6.2 [33] 18 [53] 104 [75]

� .36 (74) 1.6 (153) 51 (230)
� � .21 (74) 0.48 (153) 5.2 (230)

[primes] (cores)
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Timings in Singular

Plane curve fn,d of degree d with one singularity of type Dn.
Curves h1, h2 of degree 20 and 28 in P5.

p
ar

al
le

l

pr
ob

ab
lis

it
ic

f50,500 f400,500 h1 h2

locNormal .67 4.9 21 -
Maple-IB 1830 - N/A N/A

LA - - N/A N/A
IQ .67 5.0 30 -
locIQ � .67 (1) 5.0 (1) 7.5 (6) -
ADE � .58 (1) 5.0 (1) N/A N/A
modLocIQ � 1.5 [2] 24 [2] 27 [3] 2600 [5]

� � .77 (2) 17 (2) 4.0 [27] 59 (69)

[primes] (cores)
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