IMPROVED PARALLEL GAUSSIAN ELIMINATION FOR GRÖBNER BASIS COMPUTATIONS IN FINITE FIELDS

Brice Boyer, Christian Eder, Jean-Charles Faugère, Sylvian Lachartre and Fayssal Martani October 01, 2015

University of Kaiserslautern

- 1. Linear Algebra for Gröbner basis computations
- 2. Features of GBLA
- 3. Some benchmarks
- 4. Outlook

LINEAR ALGEBRA FOR GRÖBNER BA-SIS COMPUTATIONS

USING LINEAR ALGEBRA TO COMPUTE GRÖBNER BASES

• Algorithms like Faugère's F4 compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.

- Algorithms like Faugère's F4 compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.

- Algorithms like Faugère's F4 compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.
- Out of this data a **matrix** *M* **is generated**: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.

- Algorithms like Faugère's **F4** compute Gröbner bases via isolating the tasks of *searching for reducers* and *performing the reduction*.
- Taking a subset of S-pairs a symbolic preprocessing is performed.
- Out of this data a **matrix** *M* **is generated**: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.
- Performing Gaussian Elimination on M corresponds to reducing the chosen subset of S-pairs at once.

- Algorithms like Faugère's **F4** compute Gröbner bases via isolating the tasks of *searching for reducers* and *performing the reduction*.
- Taking a subset of S-pairs a symbolic preprocessing is performed.
- Out of this data a **matrix** *M* **is generated**: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.
- Performing Gaussian Elimination on *M* corresponds to reducing the chosen subset of S-pairs at once.
- New data for the Gröbner basis can then be read off the reduced matrix: Restore corresponding rows as polynomials.

Try to exploit underlying GB structure.

Main idea

Do a static reordering before the Gaussian Elimination to achieve a better initial shape. Invert the reordering afterwards.

 1
 3
 7
 0
 0
 1
 0

 1
 0
 0
 4
 1
 0
 5

 0
 1
 8
 6
 0
 0
 9

 0
 1
 0
 0
 0
 7
 0

 0
 1
 0
 0
 0
 3
 1

3rd step: Reduce lower left part to zero

3rd step: Reduce lower left part to zero

1 0 0 4 1 0 5 0 1 0 0 7 0 0 0 1 0 0 3 1 1 3 7 0 0 1 0 0 1 8 6 0 0 9 1 0 0 4 1 0 5 0 1 0 0 0 7 0 0 0 1 0 0 3 1 0 0 0 7 10 3 10 0 0 0 6 0 2 1 4th step: Reduce lower right part

4th step: Reduce lower right part

4th step: Reduce lower right part

5th step: Remap columns and get new polynomials for GB out of lower right part.

SO, WHAT DO "REAL WORLD" MATRICES FROM GB COMPUTATIONS LOOK LIKE?

WHAT OUR MATRICES LOOK LIKE

. 1 10 10 1 10 10 1 1 11 11 1 2.5 بليك ول ك 144 ÷ ÷ 10.00 ni ii ---a construction of the second second 1000 ÷. 1000 100 all and a second 19 (28 (184) (1844)

Some data about the matrix:

• F4 computation of homogeneous KATSURA-12, degree 6 matrix

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- Size 55MB

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- Size 55MB
- 24,006,869 nonzero elements (density: 5%)
Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- Size 55MB
- 24,006,869 nonzero elements (density: 5%)
- Dimensions:

full matrix: 21, 182 × 22, 207

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- Size 55MB
- 24,006,869 nonzero elements (density: 5%)
- Dimensions:

full matrix:	21, 182	\times	22,207	
--------------	---------	----------	--------	--

upper-left:	17, 915	\times	17, 915	known pivots
lower-left:	3,267	×	17, 915	
upper-right:	17, 915	×	4,292	
lower-right:	3,267	\times	4,292	new information

WHAT OUR MATRICES LOOK LIKE

. 1 10 10 1 10 10 1 1 11 11 1 2.5 della بليك ول ك 144 ÷ ÷ 10.00 ni ii ---a construction of the second second ÷. 1000 100 all and a second 19 (28 (184) (1844) . dia

WHAT OUR MATRICES LOOK LIKE

HYBRID MATRIX MULTIPLICATION A⁻¹B

HYBRID MATRIX MULTIPLICATION A⁻¹B

GAUSSIAN ELIMINATION ON D

FEATURES OF GBLA

• Open source library written in plain C.

- Open source library written in plain C.
- Specialized linear algebra for GB computations.

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).
- Several strategies for splicing and reduction.

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).
- Several strategies for splicing and reduction.
- Includes **converter** from and to our dedicated matrix format.

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).
- Several strategies for splicing and reduction.
- Includes **converter** from and to our dedicated matrix format.
- Access to huge matrix database: > 500 matrices, > 280GB of data.

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).
- Several strategies for splicing and reduction.
- Includes **converter** from and to our dedicated matrix format.
- Access to huge matrix database: > 500 matrices, > 280GB of data.

http://hpac.imag.fr/gbla

Horizontal Pattern If $m_{i,j} \neq 0$ then often $m_{i,j+1} \neq 0$.

Horizontal Pattern If $m_{i,j} \neq 0$ then often $m_{i,j+1} \neq 0$. Vertical Pattern If $m_{i,j} \neq 0$ then often $m_{i+1,j} \neq 0$.

Horizontal Pattern If $m_{i,j} \neq 0$ then often $m_{i,j+1} \neq 0$. **Vertical Pattern** If $m_{i,j} \neq 0$ then often $m_{i+1,j} \neq 0$.

• Can be used to optimize **AXPY** and **TRSM** operations in FL reduction.

Horizontal Pattern If $m_{i,j} \neq 0$ then often $m_{i,j+1} \neq 0$. **Vertical Pattern** If $m_{i,j} \neq 0$ then often $m_{i+1,j} \neq 0$.

- Can be used to optimize **AXPY** and **TRSM** operations in FL reduction.
- Horizontal pattern taken care of canonically.

Horizontal Pattern If $m_{i,j} \neq 0$ then often $m_{i,j+1} \neq 0$. **Vertical Pattern** If $m_{i,j} \neq 0$ then often $m_{i+1,j} \neq 0$.

- Can be used to optimize **AXPY** and **TRSM** operations in FL reduction.
- Horizontal pattern taken care of canonically.
- Need to take care of vertical pattern.

MULTILINE TRSM STEP

Exploiting horizontal and vertical patterns in the TRSM step.

$$\mathbf{r1} = \begin{bmatrix} 2 & 3 & 0 & 1 & 4 & 0 & 5 \end{bmatrix},$$

$$\mathbf{r2} = \begin{bmatrix} 1 & 7 & 0 & 0 & 3 & 1 & 2 \end{bmatrix}.$$

$$\mathbf{r1} = \begin{bmatrix} 2 & 3 & 0 & 1 & 4 & 0 & 5 \end{bmatrix}, \\ \mathbf{r2} = \begin{bmatrix} 1 & 7 & 0 & 0 & 3 & 1 & 2 \end{bmatrix}.$$

A sparse vector representation of the two rows would be given by

$$\mathbf{r1} = \begin{bmatrix} 2 & 3 & 0 & 1 & 4 & 0 & 5 \end{bmatrix}, \\ \mathbf{r2} = \begin{bmatrix} 1 & 7 & 0 & 0 & 3 & 1 & 2 \end{bmatrix}.$$

A sparse vector representation of the two rows would be given by

$$\mathbf{r1.val} = \begin{bmatrix} 2 & 3 & 1 & 4 & 5 \end{bmatrix}, \\ \mathbf{r1.pos} = \begin{bmatrix} 0 & 1 & 3 & 4 & 6 \end{bmatrix}, \\ \mathbf{r2.val} = \begin{bmatrix} 1 & 7 & 3 & 1 & 2 \end{bmatrix}, \\ \mathbf{r2.pos} = \begin{bmatrix} 0 & 1 & 4 & 5 & 6 \end{bmatrix}.$$

A multiline vector representation of r1 and r2 is given by

$$ml.val = [2 1 3 7 1 0 4 3 0 1 5 2],$$

$$ml.pos = [0 1 3 4 5 6].$$

$$\mathbf{r1} = \begin{bmatrix} 2 & 3 & 0 & 1 & 4 & 0 & 5 \end{bmatrix},$$

$$\mathbf{r2} = \begin{bmatrix} 1 & 7 & 0 & 0 & 3 & 1 & 2 \end{bmatrix}.$$

A sparse vector representation of the two rows would be given by

$$\mathbf{r1.val} = \begin{bmatrix} 2 & 3 & 1 & 4 & 5 \end{bmatrix}, \\ \mathbf{r1.pos} = \begin{bmatrix} 0 & 1 & 3 & 4 & 6 \end{bmatrix}, \\ \mathbf{r2.val} = \begin{bmatrix} 1 & 7 & 3 & 1 & 2 \end{bmatrix}, \\ \mathbf{r2.pos} = \begin{bmatrix} 0 & 1 & 4 & 5 & 6 \end{bmatrix}.$$

A multiline vector representation of r1 and r2 is given by

$$ml.val = [2 1 3 7 1 0 4 3 0 1 5 2],$$

$$ml.pos = [0 1 3 4 5 6].$$

• Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in D resp. rank of M?

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in *D* resp. rank of *M*?

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in D resp. rank of M?

1. Reduce C directly with A (store corresponding data in C).

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in D resp. rank of M?

- 1. Reduce C directly with A (store corresponding data in C).
- 2. Carry out corresponding operations from *B* to *D* using updated *C*.

- Number of initially known pivots (i.e. # rows of A and B) is large compared to # rows of C and D.
- Most time of FL reduction is spent in **TRSM** step $A^{-1}B$.
- Only interested in D resp. rank of M?

- 1. Reduce C directly with A (store corresponding data in C).
- 2. Carry out corresponding operations from *B* to *D* using updated *C*.
- 3. Reduce D.

• Matrices are pretty sparse, but structured.
- Matrices are pretty sparse, but structured.
- GBLA supports two matrix formats, both use binary format.

- Matrices are pretty sparse, but structured.
- GBLA supports two matrix formats, both use binary format.
- GBLA includes a converter between the two supported formats and can also dump to Magma matrix format.

- Matrices are pretty sparse, but structured.
- GBLA supports two matrix formats, both use binary format.
- GBLA includes a converter between the two supported formats and can also dump to Magma matrix format.

Size	Length	Data	Description
uint32_t	1	b	version number
uint32_t	1	m	# rows
uint32_t	1	n	# columns
uint32_t	1	р	prime / field characteristic
uint64_t	1	nnz	# nonzero entries
uint16_t	nnz	data	entry in matrix
uint32_t	nnz	cols	column index of entry
uint32_t	m	rows	length of rows

Table 1: Old matrix format (legacy version)

Size	Length	Data	Description
uint32_t	1	b	version number + information for data type of pdata
uint32_t	1	m	# rows
uint32_t	1	n	# columns
uint32_t	1	р	prime / field characteristic
uint64_t	1	nnz	# nonzero entries
uint16_t	nnz	data	several rows are of type $x_i f_j$
uint32_t	nnz	cols	can be compressed for consecutive elements
uint32_t	m	rows	length of rows
uint32_t	m	pmap	maps rows to pdata
uint64_t	1	k	size of compressed colid
uint64_t	k	colid	compression of columns:
			Single column entry masked via (1 << 31);
			s consecutive entries starting at column c are stored as "c s"
uint32_t	1	pnb	# polynomials
uint64_t	1	pnnz	# nonzero coefficients in polynomials
uint32_t	pnb	prow	length of polynomial / row representation
xinty_t	pnnz	pdata	coefficients of polynomials

Table 2: New matrix format (compressing data and cols)

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9	2.3GB	0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

Matrix	Size old	Size new	gzipped old gzipped new		Time old	Time new
F4-kat14-mat9	2.3GB	0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

New format vs. Old format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9	2.3GB	0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

New format vs. Old format

• 1/3rd of memory usage.

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9	2.3GB	0.74GB	1.2GB	0.29GB	230s	66s
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s

New format vs. Old format

- 1/3rd of memory usage.
- 1/4th of memory usage when compressed with gzip.

Matrix	Size old	Size new	gzipped old	gzipped new Time old		Time new	
F4-kat14-mat9	2.3GB	0.74GB	1.2GB	0.29GB	230s	66s	
F5-kat17-mat10	43GB	12GB	24GB	5.3GB	4419s	883s	

New format vs. Old format

- 1/3rd of memory usage.
- 1/4th of memory usage when compressed with gzip.
- Compression 4 5 times faster.

SOME BENCHMARKS

All timings in seconds.

Implementation	FL Imp	FL Implementation		GB	GBLA v0.1			GBLA v0.2		
Matrix/Threads:	1	16	32	1	16	32	1	16	32	
F5-kat13-mat5 F5-kat13-mat6	16.7 27.3	2.7 4.15	2.3 4.0	14.5 23.9	2.02 3.08	1.87 2.65	14.5 25.9	1.73 3.03	1.61 2.28	
F5-kat14-mat7 F5-kat14-mat8	139 181	17.4 24.95	16.6 23.1	142 177	13.4 16.9	10.6 12.7	122 158	11.2 14.7	8.64 10.5	
F5-kat15-mat7	629	61.8	55.6	633	55.1	38.2	553	46.3	30.7	
F5-kat16-mat6	1,203	110	83.3	1,147	98.7	69.9	988	73.9	49.0	
F5-mr-9-10-7-mat3	591	70.8	71.3	733	57.3	37.9	747	52.8	33.2	
F5-cyclic-10-mat20 F5-cyclic-10-sym-mat17				2,589 2,463	274 465	209 405	2,074 2,391	171 275	152 245	

All timings in seconds.

Implementation	Magma	G	GBLA v0.1		GBLA v0.2		2
Matrix/Threads:	1	1	16	32	1	16	32
F4-kat12-mat9	11.2	11.4	1.46	1.60	11.3	1.40	1.40
F4-kat13-mat2 F4-kat13-mat3 F4-kat13-mat9 F4-kat14-mat8	0.94 9.33 168 2,747	1.18 11.0 165 2,545	0.38 1.70 16.0 207	0.61 3.10 11.8 165	1.11 8.51 114 1,338	0.26 1.07 9.74 104	0.33 1.13 6.83 65.8
F4-kat15-mat7 F4-kat15-mat8 F4-kat15-mat9	10,345 13,936 24,393	9,514 12,547 22,247	742 961 1,709	537 604 1,256	4,198 6,508 10,923	298 470 779	195 283 450
F4-rand16-d2-2-mat6 F4-rand16-d2-3-mat8 F4-rand16-d2-3-mat9 F4-rand16-d2-3-mat10 ¹		4,902 48,430	375 3,473 6,956 9,691	219 2,119 4,470 6,223	3,054 26,533	224 1,782 3,214 3,820	133 1,027 1,776 1,972

Note that Magma generates slightly bigger matrices for the given examples.

¹Reconstruction fails due to memory consumption

OUTLOOK

• Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- Connect GBLA to **Singular** to get a tentative **F4**.

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- Connect GBLA to Singular to get a tentative F4.
- Creation of a new open source plain C library GBTOOLS.

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- Connect GBLA to **Singular** to get a tentative **F4**.
- Creation of a new open source plain C library GBTOOLS.
- Deeper investigation on parallelization on networks.

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- Connect GBLA to **Singular** to get a tentative **F4**.
- Creation of a new open source plain C library GBTOOLS.
- Deeper investigation on parallelization on networks.
- First steps exploiting heterogeneous CPU/GPU platforms for GBLA.

REFERENCES

	Buchberger, B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, 1965. PD: thesis, University of Innsbruck, Austria
E	Buchberger, B. A criterion for detecting unnecessary reductions in the construction of Gröbner bases, 1979. EUROSAM 79, An International Symposium on Symbolic and Algebraic Manipulation
	Buchberger, B. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, 1985. Multidimensional Systems Theory, D. Reidel Publication Company
E	Eder, C. and Faugère, JC. A survey on signature-based Groebner basis algorithms, 2014. http://arxiv.org/abs/1404.1774
	Faugère, JC. A new efficient algorithm for computing Gröbner bases (F4), 1999. Journal of Pure and Applied Algebra
	Faugère, JC. A new efficient algorithm for computing Gröbner bases without reduction to zero (FS), 2002. Proceedings of the 2002 international symposium on Symbolic and algebraic computation
	Faugère, JC. and Lachartre, S. Parallel Gaussian Elimination for Gröbner bases computations in finite fields, 2010. Proceedings of the 4th International Workshop on Parallel and Symbolic Computation
	Gebauer, R. and Möller, H. M. On an installation of Buchberger's algorithm, 1988. Journal of Symbolic Computation

THANK YOU!

COMMENTS? QUESTIONS?