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linear algebra for gröbner ba-
sis computations



using linear algebra to compute gröbner bases

• Algorithms like Faugère’s F4 compute Gröbner bases via isolating
the tasks of searching for reducers and performing the reduction.

• Taking a subset of S-pairs a symbolic preprocessing is performed.
• Out of this data a matrix M is generated: Its rows correspond to
polynomials, its columns represent all appearing monomials in
the given order.

• Performing Gaussian Elimination on M corresponds to reducing
the chosen subset of S-pairs at once.

• New data for the Gröbner basis can then be read off the reduced
matrix: Restore corresponding rows as polynomials.
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idea by faugère & lachartre

Specialize Linear Algebra for reduction steps in GB computations.

1 3 0 0 7 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 1 0 0 0 7 0
0 0 0 0 1 3 1

S-pair

S-pair

reducer

Try to exploit underlying GB structure.

Main idea
Do a static reordering before the Gaussian Elimination to achieve a
better initial shape. Invert the reordering afterwards.
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faugère-lachartre idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0
1 0 4 1 0 0 5
0 1 6 0 8 0 1
0 1 0 0 0 7 0
0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0
1 0 0 4 1 0 5
0 1 8 6 0 0 9
0 1 0 0 0 7 0
0 0 1 0 0 3 1
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faugère-lachartre idea

2nd step: Sort pivot and non-pivot rows
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0 0 1 0 0 3 1
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faugère-lachartre idea

3rd step: Reduce lower left part to zero

1 0 0 4 1 0 5
0 1 0 0 0 7 0
0 0 1 0 0 3 1
1 3 7 0 0 1 0
0 1 8 6 0 0 9

1 0 0 4 1 0 5
0 1 0 0 0 7 0
0 0 1 0 0 3 1
0 0 0 7 10 3 10
0 0 0 6 0 2 1
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faugère-lachartre idea

4th step: Reduce lower right part

1 0 0 4 1 0 5
0 1 0 0 0 7 0
0 0 1 0 0 3 1
0 0 0 7 10 3 10
0 0 0 6 0 2 1

1 0 0 4 1 0 5
0 1 0 0 0 7 0
0 0 1 0 0 3 1
0 0 0 7 0 6 3
0 0 0 0 4 1 5

5th step: Remap columns and get new polynomials for GB out of
lower right part.

9



faugère-lachartre idea

4th step: Reduce lower right part

1 0 0 4 1 0 5
0 1 0 0 0 7 0
0 0 1 0 0 3 1
0 0 0 7 10 3 10
0 0 0 6 0 2 1

1 0 0 4 1 0 5
0 1 0 0 0 7 0
0 0 1 0 0 3 1
0 0 0 7 0 6 3
0 0 0 0 4 1 5

5th step: Remap columns and get new polynomials for GB out of
lower right part.

9



faugère-lachartre idea

4th step: Reduce lower right part

1 0 0 4 1 0 5
0 1 0 0 0 7 0
0 0 1 0 0 3 1
0 0 0 7 10 3 10
0 0 0 6 0 2 1

1 0 0 4 1 0 5
0 1 0 0 0 7 0
0 0 1 0 0 3 1
0 0 0 7 0 6 3
0 0 0 0 4 1 5

5th step: Remap columns and get new polynomials for GB out of
lower right part.

9



so, what do “real world” matrices from gb
computations look like?
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what our matrices look like
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what our matrices look like

Some data about the matrix:

• F4 computation of homogeneous Katsura-12, degree 6 matrix

• Size 55MB
• 24, 006, 869 nonzero elements (density: 5%)
• Dimensions:

full matrix: 21, 182 × 22, 207

upper-left: 17, 915 × 17, 915 known pivots
lower-left: 3, 267 × 17, 915

upper-right: 17, 915 × 4, 292
lower-right: 3, 267 × 4, 292 new information
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what our matrices look like
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what our matrices look like
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hybrid matrix multiplication a-1b
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hybrid matrix multiplication a-1b
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reduce c to zero
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gaussian elimination on d
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new information
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features of gbla



library overview

• Open source library written in plain C.

• Specialized linear algebra for GB computations.
• Parallel implementation (OpenMP), scaling “nicely” up to 32 cores.
• Works over finite fields for 16-bit primes (at the moment).
• Several strategies for splicing and reduction.
• Includes converter from and to our dedicated matrix format.
• Access to huge matrix database: > 500 matrices, > 280GB of data.

http://hpac.imag.fr/gbla
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exploiting block structures in matrices

Matrices from GB computations have nonzero entries often grouped
in blocks.

Horizontal Pattern If mi,j ̸= 0 then often mi,j+1 ̸= 0.

Vertical Pattern If mi,j ̸= 0 then often mi+1,j ̸= 0.

• Can be used to optimize AXPY and TRSM operations in FL
reduction.

• Horizontal pattern taken care of canonically.
• Need to take care of vertical pattern.

22
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multiline trsm step

. . . ...
...

...
...

...
...

1 · · · ∗ ∗ ∗ ∗
1 · · · ai,j ai,j+1 ∗. . . ...

...
...

1 · · · ∗
1 ∗

1





A
...
...

...
...

...
...

...
∗ ∗ · · · ∗ · · · ∗ ∗
∗ ∗ · · · bi,ℓ ∗ · · · ∗...

...
...

...
...

...
...

∗ ∗ · · · bk,ℓ ∗ · · · ∗
∗ ∗ · · · bk+1,ℓ ∗ · · · ∗
∗ ∗ · · · ∗ · · · ∗ ∗





B

Exploiting horizontal and vertical patterns in the TRSM step.
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multiline data structure – an example

Consider the following two rows:

r1 = [ 2 3 0 1 4 0 5 ],

r2 = [ 1 7 0 0 3 1 2 ].

A sparse vector representation of the two rows would be given by

r1.val = [ 2 3 1 4 5 ],

r1.pos = [ 0 1 3 4 6 ],

r2.val = [ 1 7 3 1 2 ],

r2.pos = [ 0 1 4 5 6 ].

A multiline vector representation of r1 and r2 is given by

ml.val = [ 2 1 3 7 1 0 4 3 0 1 5 2 ],

ml.pos = [ 0 1 3 4 5 6 ].

24
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new order of operations

• Number of initially known pivots (i.e. # rows of A and B) is large
compared to # rows of C and D.

• Most time of FL reduction is spent in TRSM step A−1B.
• Only interested in D resp. rank of M?

Change order of operations.

1. Reduce C directly with A (store corresponding data in C).
2. Carry out corresponding operations from B to D using updated C.
3. Reduce D.

25
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gbla matrix formats

• Matrices are pretty sparse, but structured.

• GBLA supports two matrix formats, both use binary format.
• GBLA includes a converter between the two supported formats
and can also dump to Magma matrix format.

Table 1: Old matrix format (legacy version)

Size Length Data Description

uint32_t 1 b version number
uint32_t 1 m # rows
uint32_t 1 n # columns
uint32_t 1 p prime / field characteristic
uint64_t 1 nnz # nonzero entries
uint16_t nnz data entry in matrix
uint32_t nnz cols column index of entry
uint32_t m rows length of rows
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gbla matrix formats

Table 2: New matrix format (compressing data and cols)

Size Length Data Description

uint32_t 1 b version number + information for data type of pdata
uint32_t 1 m # rows
uint32_t 1 n # columns
uint32_t 1 p prime / field characteristic
uint64_t 1 nnz # nonzero entries
uint16_t nnz data several rows are of type xifj
uint32_t nnz cols can be compressed for consecutive elements
uint32_t m rows length of rows

uint32_t m pmap maps rows to pdata
uint64_t 1 k size of compressed colid
uint64_t k colid compression of columns:

Single column entry masked via (1 << 31);
s consecutive entries starting at column c are stored as “c s”

uint32_t 1 pnb # polynomials
uint64_t 1 pnnz # nonzero coefficients in polynomials
uint32_t pnb prow length of polynomial / row representation
xinty_t pnnz pdata coefficients of polynomials
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gbla matrix formats – comparison

Table 3: Storage and time efficiency of the new format

Matrix Size old Size new gzipped old gzipped new Time old Time new

F4-kat14-mat9 2.3GB 0.74GB 1.2GB 0.29GB 230s 66s
F5-kat17-mat10 43GB 12GB 24GB 5.3GB 4419s 883s

New format vs. Old format

• 1/3rd of memory usage.
• 1/4th of memory usage when compressed with gzip.
• Compression 4− 5 times faster.
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some benchmarks



gbla vs. faugère-lachartre

All timings in seconds.

Implementation FL Implementation GBLA v0.1 GBLA v0.2

Matrix/Threads: 1 16 32 1 16 32 1 16 32

F5-kat13-mat5 16.7 2.7 2.3 14.5 2.02 1.87 14.5 1.73 1.61
F5-kat13-mat6 27.3 4.15 4.0 23.9 3.08 2.65 25.9 3.03 2.28
F5-kat14-mat7 139 17.4 16.6 142 13.4 10.6 122 11.2 8.64
F5-kat14-mat8 181 24.95 23.1 177 16.9 12.7 158 14.7 10.5
F5-kat15-mat7 629 61.8 55.6 633 55.1 38.2 553 46.3 30.7
F5-kat16-mat6 1,203 110 83.3 1,147 98.7 69.9 988 73.9 49.0

F5-mr-9-10-7-mat3 591 70.8 71.3 733 57.3 37.9 747 52.8 33.2
F5-cyclic-10-mat20 2,589 274 209 2,074 171 152

F5-cyclic-10-sym-mat17 2,463 465 405 2,391 275 245
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gbla vs. magma v2.20-10

All timings in seconds.

Implementation Magma GBLA v0.1 GBLA v0.2

Matrix/Threads: 1 1 16 32 1 16 32

F4-kat12-mat9 11.2 11.4 1.46 1.60 11.3 1.40 1.40
F4-kat13-mat2 0.94 1.18 0.38 0.61 1.11 0.26 0.33
F4-kat13-mat3 9.33 11.0 1.70 3.10 8.51 1.07 1.13
F4-kat13-mat9 168 165 16.0 11.8 114 9.74 6.83
F4-kat14-mat8 2,747 2,545 207 165 1,338 104 65.8
F4-kat15-mat7 10,345 9,514 742 537 4,198 298 195
F4-kat15-mat8 13,936 12,547 961 604 6,508 470 283
F4-kat15-mat9 24,393 22,247 1,709 1,256 10,923 779 450

F4-rand16-d2-2-mat6 4,902 375 219 3,054 224 133
F4-rand16-d2-3-mat8 48,430 3,473 2,119 26,533 1,782 1,027
F4-rand16-d2-3-mat9 6,956 4,470 3,214 1,776
F4-rand16-d2-3-mat101 9,691 6,223 3,820 1,972

Note that Magma generates slightly bigger matrices for the given examples.
1Reconstruction fails due to memory consumption 31



outlook



different approaches

• Optimizing GBLA for floating point and 32-bit unsigned int
arithmetic.

• Connect GBLA to Singular to get a tentative F4.
• Creation of a new open source plain C library GBTOOLS.
• Deeper investigation on parallelization on networks.
• First steps exploiting heterogeneous CPU/GPU platforms for GBLA.

33



different approaches

• Optimizing GBLA for floating point and 32-bit unsigned int
arithmetic.

• Connect GBLA to Singular to get a tentative F4.

• Creation of a new open source plain C library GBTOOLS.
• Deeper investigation on parallelization on networks.
• First steps exploiting heterogeneous CPU/GPU platforms for GBLA.

33



different approaches

• Optimizing GBLA for floating point and 32-bit unsigned int
arithmetic.

• Connect GBLA to Singular to get a tentative F4.
• Creation of a new open source plain C library GBTOOLS.

• Deeper investigation on parallelization on networks.
• First steps exploiting heterogeneous CPU/GPU platforms for GBLA.

33



different approaches

• Optimizing GBLA for floating point and 32-bit unsigned int
arithmetic.

• Connect GBLA to Singular to get a tentative F4.
• Creation of a new open source plain C library GBTOOLS.
• Deeper investigation on parallelization on networks.

• First steps exploiting heterogeneous CPU/GPU platforms for GBLA.

33



different approaches

• Optimizing GBLA for floating point and 32-bit unsigned int
arithmetic.

• Connect GBLA to Singular to get a tentative F4.
• Creation of a new open source plain C library GBTOOLS.
• Deeper investigation on parallelization on networks.
• First steps exploiting heterogeneous CPU/GPU platforms for GBLA.

33



references

Buchberger, B.
Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal,
1965.
PhD thesis, Universtiy of Innsbruck, Austria
Buchberger, B.
A criterion for detecting unnecessary reductions in the construction
of Gröbner bases, 1979.
EUROSAM ’79, An International Symposium on Symbolic and Algebraic
Manipulation
Buchberger, B.
Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory,
1985.
Multidimensional Systems Theory, D. Reidel Publication Company
Eder, C. and Faugère, J.-C.
A survey on signature-based Groebner basis algorithms, 2014.
http://arxiv.org/abs/1404.1774
Faugère, J.-C.
A new efficient algorithm for computing Gröbner bases (F4), 1999.
Journal of Pure and Applied Algebra
Faugère, J.-C.
A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5), 2002.
Proceedings of the 2002 international symposium on Symbolic and
algebraic computation
Faugère, J.-C. and Lachartre, S.
Parallel Gaussian Elimination for Gröbner bases computations in
finite fields, 2010.
Proceedings of the 4th International Workshop on Parallel and
Symbolic Computation
Gebauer, R. and Möller, H. M.
On an installation of Buchberger’s algorithm, 1988.
Journal of Symbolic Computation

34

http://arxiv.org/abs/1404.1774


thank you!

35



comments? questions?
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