IMPROVED PARALLEL GAUSSIAN ELIMINATION FOR GRÖBNER BASIS COMPUTATIONS IN FINITE FIELDS

Brice Boyer, Christian Eder, Jean-Charles Faugère, Sylvian Lachartre and Fayssal Martani
October 01, 2015
University of Kaiserslautern

TABLE OF CONTENTS

1. Linear Algebra for Gröbner basis computations
2. Features of GBLA
3. Some benchmarks
4. Outlook

LINEAR ALGEBRA FOR GRÖBNER BASIS COMPUTATIONS

USING LINEAR ALGEBRA TO COMPUTE GRÖBNER BASES

- Algorithms like Faugère's F4 compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.

USING LINEAR ALGEBRA TO COMPUTE GRÖBNER BASES

- Algorithms like Faugère's F4 compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.

USING LINEAR ALGEBRA TO COMPUTE GRÖBNER BASES

- Algorithms like Faugère's F4 compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.
- Out of this data a matrix M is generated: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.

USING LINEAR ALGEBRA TO COMPUTE GRÖBNER BASES

- Algorithms like Faugère's F4 compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.
- Out of this data a matrix M is generated: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.
- Performing Gaussian Elimination on M corresponds to reducing the chosen subset of S-pairs at once.

USING LINEAR ALGEBRA TO COMPUTE GRÖBNER BASES

- Algorithms like Faugère's F4 compute Gröbner bases via isolating the tasks of searching for reducers and performing the reduction.
- Taking a subset of S-pairs a symbolic preprocessing is performed.
- Out of this data a matrix M is generated: Its rows correspond to polynomials, its columns represent all appearing monomials in the given order.
- Performing Gaussian Elimination on M corresponds to reducing the chosen subset of S-pairs at once.
- New data for the Gröbner basis can then be read off the reduced matrix: Restore corresponding rows as polynomials.

IDEA BY FAUGĖRE \& LACHARTRE

Specialize Linear Algebra for reduction steps in GB computations.

IDEA BY FAUGĖRE \& LACHARTRE

Specialize Linear Algebra for reduction steps in GB computations.

1	3	0	0	7	1	0
1	0	4	1	0	0	5
0	1	6	0	8	0	1
0	1	0	0	0	7	0
0	0	0	0	1	3	1

IDEA BY FAUGĖRE \& LACHARTRE

Specialize Linear Algebra for reduction steps in GB computations.

1	3	0	0	7	1	0
1	0	4	1	0	0	5
0	1	6	0	8	0	1
0	1	0	0	0	7	0
0	0	0	0	1	3	1

Try to exploit underlying GB structure.

IDEA BY FAUGĖRE \& LACHARTRE

Specialize Linear Algebra for reduction steps in GB computations.

$$
\begin{aligned}
\text { S-pair } & \left\{\begin{array}{lllllll}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5
\end{array}\right. \\
\text { S-pair } & \left\{\begin{array}{lllllll}
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 7 & 0
\end{array}\right. \\
\text { reducer } & \leftarrow \begin{array}{llllll}
& 0 & 0 & 0 & 1 & 3
\end{array}
\end{aligned}
$$

Try to exploit underlying GB structure.

IDEA BY FAUGĖRE \& LACHARTRE

Specialize Linear Algebra for reduction steps in GB computations.
S-pair $\left\{\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5\end{array}\right.$
s-pair $\left\{\begin{array}{lllllll}0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 7 & 0\end{array}\right.$

reducer | | 0 | 0 | 0 | 1 | 3 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Try to exploit underlying GB structure.

IDEA BY FAUGĖRE \& LACHARTRE

Specialize Linear Algebra for reduction steps in GB computations.
S-pair $\left\{\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5\end{array}\right.$
s-pair $\left\{\begin{array}{lllllll}0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 7 & 0\end{array}\right.$

reducer | | 0 | 0 | 0 | 1 | 3 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Try to exploit underlying GB structure.

IDEA BY FAUGĖRE \& LACHARTRE

Specialize Linear Algebra for reduction steps in GB computations.
S-pair $\left\{\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5\end{array}\right.$
s-pair $\left\{\begin{array}{lllllll}0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 7 & 0\end{array}\right.$

reducer \leftarrow| 0 | 0 | 0 | 0 | 1 | 3 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Try to exploit underlying GB structure.

Main idea
Do a static reordering before the Gaussian Elimination to achieve a better initial shape. Invert the reordering afterwards.

FAUGĖRE-LACHARTRE IDEA

1st step: Sort pivot and non-pivot columns

1	3	0	0	7	1	0
1	0	4	1	0	0	5
0	1	6	0	8	0	1
0	1	0	0	0	7	0
0	0	0	0	1	3	1

FAUGĖRE-LACHARTRE IDEA

1st step: Sort pivot and non-pivot columns
$\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5 \\ 0 & 1 & 6 & 0 & 8 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 1 & 3 & 1 \\ \mu & & & & & & \end{array}$
Pivot column

FAUGĖRE-LACHARTRE IDEA

1st step: Sort pivot and non-pivot columns

Pivot column

FAUGÈRE-LACHARTRE IDEA

1st step: Sort pivot and non-pivot columns

FAUGĖRE-LACHARTRE IDEA

1st step: Sort pivot and non-pivot columns

FAUGÈRE-LACHARTRE IDEA

1st step: Sort pivot and non-pivot columns

1	3	0	0	7	1	0								
1	0	4	1	0	0	5								
0	1	6	0	8	0	1								
0	1	0	0	0	7	0								
0	0	0	0	1	3	1	$l l$	1	3	7	0	0	1	0
:---	:---	:---	:---	:---	:---	:---	:---							
1	0	0	4	1	0	5								
0	1	8	6	0	0	9								
0	1	0	0	0	7	0								
0	0	1	0	0	3	1								

FAUGĖRE-LACHARTRE IDEA

2nd step: Sort pivot and non-pivot rows

$$
\begin{array}{lll:llll}
1 & 3 & 7 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 4 & 1 & 0 & 5 \\
0 & 1 & 8 & 6 & 0 & 0 & 9 \\
0 & 1 & 0 & 0 & 0 & 7 & 0 \\
0 & 0 & 1 & 0 & 0 & 3 & 1
\end{array}
$$

FAUGÈRE-LACHARTRE IDEA

2nd step: Sort pivot and non-pivot rows

FAUGĖRE-LACHARTRE IDEA

2nd step: Sort pivot and non-pivot rows

FAUGĖRE-LACHARTRE IDEA

2nd step: Sort pivot and non-pivot rows

FAUGÈRE-LACHARTRE IDEA

2nd step: Sort pivot and non-pivot rows

FAUGĖRE-LACHARTRE IDEA

3rd step: Reduce lower left part to zero

$$
\begin{array}{lll:llll}
1 & 0 & 0 & 4 & 1 & 0 & 5 \\
0 & 1 & 0 & 0 & 0 & 7 & 0 \\
0 & 0 & 1 & 0 & 0 & 3 & 1 \\
\hdashline 1 & 3 & 7 & 0 & 0 & 1 & 0 \\
0 & 1 & 8 & 6 & 0 & 0 & 9
\end{array}
$$

FAUGÈRE-LACHARTRE IDEA

3rd step: Reduce lower left part to zero

$$
\begin{array}{lll:llll}
1 & 0 & 0 & 4 & 1 & 0 & 5 \\
0 & 1 & 0 & 0 & 0 & 7 & 0 \\
0 & 0 & 1 & 0 & 0 & 3 & 1 \\
\hdashline 1 & 3 & 7 & 0 & 0 & 1 & 0 \\
0 & 1 & 8 & 6 & 0 & 0 & 9
\end{array} \quad \begin{array}{llll:lll}
1 & 0 & 0 & 4 & 1 & 0 & 5 \\
0 & 1 & 0 & 0 & 0 & 7 & 0 \\
0 & 0 & 1 & 0 & 0 & 3 & 1 \\
\hdashline 0 & 0 & 0 & 7 & 10 & 3 & 10 \\
0 & 0 & 0 & 6 & 0 & 2 & 1
\end{array}
$$

FAUGĖRE-LACHARTRE IDEA

4th step: Reduce lower right part

$$
\begin{array}{ccc:ccc}
1 & 0 & 0 & 4 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 7 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 7 & 10 & 3 \\
\hline 0 & 0 & 0 & 6 & 0 & 2 \\
\hdashline
\end{array}
$$

FAUGÈRE-LACHARTRE IDEA

4th step: Reduce lower right part

1	0	0	4	1	0	5								
0	1	0	0	0	7	0								
0	0	1	0	0	3	1								
0	0	0	7	10	3	10								
0	0	0	6	0	2	1	\quad	1	0	0	4	1	0	5
:---	:---	:---	:---	:---	:---	:---								
0	1	0	0	0	7	0								
0	0	1	0	0	3	1								
0	0	0	7	0	6	3								
0	0	0	0	4	1	5								

FAUGÈRE-LACHARTRE IDEA

4th step: Reduce lower right part

1	0	0	4	1	0	5								
0	1	0	0	0	7	0								
0	0	1	0	0	3	1								
0	0	0	7	10	3	10								
0	0	0	6	0	2	1	\quad	1	0	0	4	1	0	5
:---	:---	:---	:---	:---	:---	:---								
0	1	0	0	0	7	0								
0	0	1	0	0	3	1								
0	0	0	7	0	6	3								
0	0	0	0	4	1	5								

5th step: Remap columns and get new polynomials for GB out of lower right part.

SO, WHAT DO "REAL WORLD" MATRICES FROM GB COMPUTATIONS LOOK LIKE?

WHAT OUR MATRICES LOOK LIKE

WHAT OUR MATRICES LOOK LIKE

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix

WHAT OUR MATRICES LOOK LIKE

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- Size 55MB

WHAT OUR MATRICES LOOK LIKE

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- Size 55MB
- $24,006,869$ nonzero elements (density: 5\%)

WHAT OUR MATRICES LOOK LIKE

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- Size 55MB
- 24,006, 869 nonzero elements (density: 5\%)
- Dimensions:
full matrix: $21,182 \times 22,207$

WHAT OUR MATRICES LOOK LIKE

Some data about the matrix:

- F4 computation of homogeneous KATSURA-12, degree 6 matrix
- Size 55MB
- 24, 006, 869 nonzero elements (density: 5\%)
- Dimensions:

full matrix:	$21,182 \times 22,207$			
upper-left:	17,915	\times	17,915	known pivots
lower-left:	3,267	\times	17,915	
upper-right:	17,915	\times	4,292	
lower-right:	3,267	\times	4,292	new information

WHAT OUR MATRICES LOOK LIKE

WHAT OUR MATRICES LOOK LIKE

REDUCE C TO ZERO

GAUSSIAN ELIMINATION ON D

NEW INFORMATION

FEATURES OF GBLA

LIBRARY OVERVIEW

- Open source library written in plain C.

LIBRARY OVERVIEW

- Open source library written in plain C.
- Specialized linear algebra for GB computations.

LIBRARY OVERVIEW

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.

LIBRARY OVERVIEW

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).

LIBRARY OVERVIEW

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16 -bit primes (at the moment).
- Several strategies for splicing and reduction.

LIBRARY OVERVIEW

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).
- Several strategies for splicing and reduction.
- Includes converter from and to our dedicated matrix format.

LIBRARY OVERVIEW

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).
- Several strategies for splicing and reduction.
- Includes converter from and to our dedicated matrix format.
- Access to huge matrix database: > 500 matrices, $>280 \mathrm{~GB}$ of data.

LIBRARY OVERVIEW

- Open source library written in plain C.
- Specialized linear algebra for GB computations.
- Parallel implementation (OpenMP), scaling "nicely" up to 32 cores.
- Works over finite fields for 16-bit primes (at the moment).
- Several strategies for splicing and reduction.
- Includes converter from and to our dedicated matrix format.
- Access to huge matrix database: > 500 matrices, $>280 \mathrm{~GB}$ of data.
http://hpac.imag.fr/gbla

EXPLOITING BLOCK STRUCTURES IN MATRICES

Matrices from GB computations have nonzero entries often grouped in blocks.

Horizontal Pattern If $m_{i, j} \neq 0$ then often $m_{i, j+1} \neq 0$.

EXPLOITING BLOCK STRUCTURES IN MATRICES

Matrices from GB computations have nonzero entries often grouped in blocks.

Horizontal Pattern If $m_{i, j} \neq 0$ then often $m_{i, j+1} \neq 0$.
Vertical Pattern If $m_{i, j} \neq 0$ then often $m_{i+1, j} \neq 0$.

EXPLOITING BLOCK STRUCTURES IN MATRICES

Matrices from GB computations have nonzero entries often grouped in blocks.

Horizontal Pattern If $m_{i, j} \neq 0$ then often $m_{i, j+1} \neq 0$.
Vertical Pattern If $m_{i, j} \neq 0$ then often $m_{i+1, j} \neq 0$.

- Can be used to optimize AXPY and TRSM operations in FL reduction.

EXPLOITING BLOCK STRUCTURES IN MATRICES

Matrices from GB computations have nonzero entries often grouped in blocks.

Horizontal Pattern If $m_{i, j} \neq 0$ then often $m_{i, j+1} \neq 0$.
Vertical Pattern If $m_{i, j} \neq 0$ then often $m_{i+1, j} \neq 0$.

- Can be used to optimize AXPY and TRSM operations in FL reduction.
- Horizontal pattern taken care of canonically.

EXPLOITING BLOCK STRUCTURES IN MATRICES

Matrices from GB computations have nonzero entries often grouped in blocks.

Horizontal Pattern If $m_{i, j} \neq 0$ then often $m_{i, j+1} \neq 0$.
Vertical Pattern If $m_{i, j} \neq 0$ then often $m_{i+1, j} \neq 0$.

- Can be used to optimize AXPY and TRSM operations in FL reduction.
- Horizontal pattern taken care of canonically.
- Need to take care of vertical pattern.

MULTILINE TRSM STEP

Exploiting horizontal and vertical patterns in the TRSM step.

MULTILINE DATA STRUCTURE - AN EXAMPLE

Consider the following two rows:

$$
\begin{aligned}
\mathrm{r} 1 & =\left[\begin{array}{llllllll}
2 & 3 & 0 & 1 & 4 & 0 & 5
\end{array}\right], \\
\mathrm{r} 2 & =\left[\begin{array}{lllllll}
1 & 7 & 0 & 0 & 3 & 1 & 2
\end{array}\right] .
\end{aligned}
$$

MULTILINE DATA STRUCTURE - AN EXAMPLE

Consider the following two rows:

$$
\begin{aligned}
\mathrm{r} 1 & =\left[\begin{array}{llllllll}
\mathrm{r} & 3 & 0 & 1 & 4 & 0 & 5
\end{array}\right],\left[\begin{array}{lllllll}
1 & 7 & 0 & 0 & 3 & 1 & 2
\end{array}\right] .
\end{aligned}
$$

A sparse vector representation of the two rows would be given by

$$
\begin{aligned}
\text { r1.val } & =\left[\begin{array}{llllll}
2 & 3 & 1 & 4 & 5 &], \\
\text { r1.pos } & =\left[\begin{array}{llllll}
& 1 & 3 & 4 & 6
\end{array}\right], \\
\text { r2.val } & =\left[\begin{array}{llllll}
1 & 7 & 3 & 1 & 2
\end{array}\right], \\
\text { r2.pos } & =\left[\begin{array}{llllll}
& 0 & 1 & 4 & 5 &
\end{array}\right] .
\end{array}, \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

MULTILINE DATA STRUCTURE - AN EXAMPLE

Consider the following two rows:

$$
\begin{aligned}
\mathrm{r} 1 & =\left[\begin{array}{llllllll}
\mathrm{r} 2 & 3 & 0 & 1 & 4 & 0 & 5
\end{array}\right],\left[\begin{array}{lllllll}
1 & 7 & 0 & 0 & 3 & 1 & 2
\end{array}\right] .
\end{aligned}
$$

A sparse vector representation of the two rows would be given by

$$
\begin{aligned}
\text { r1.val } & =\left[\begin{array}{llllll}
2 & 3 & 1 & 4 & 5 &], \\
\text { r1.pos } & =\left[\begin{array}{llllll}
0 & 1 & 3 & 4 & 6
\end{array}\right], \\
\text { r2.val } & =\left[\begin{array}{llllll}
1 & 7 & 3 & 1 & 2
\end{array}\right], \\
\text { r2.pos } & =\left[\begin{array}{llllll}
& 0 & 1 & 4 & 5 & 6
\end{array}\right] .
\end{array}, \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

A multiline vector representation of r 1 and r 2 is given by

$$
\begin{aligned}
\mathrm{ml} . \mathrm{val} & =\left[\begin{array}{lllllllllllll}
2 & 1 & 3 & 7 & 1 & 0 & 4 & 3 & 0 & 1 & 5 & 2
\end{array}\right], \\
\mathrm{ml} . \operatorname{pos} & =\left[\begin{array}{lllllll}
& 1 & 3 & 4 & 5 & 6 &] . \\
& & & & & &
\end{array}\right)
\end{aligned}
$$

MULTILINE DATA STRUCTURE - AN EXAMPLE

Consider the following two rows:

$$
\begin{aligned}
\mathrm{r} 1 & =\left[\begin{array}{llllllll}
\mathrm{r} 2 & 3 & 0 & 1 & 4 & 0 & 5
\end{array}\right],\left[\begin{array}{lllllll}
1 & 7 & 0 & 0 & 3 & 1 & 2
\end{array}\right] .
\end{aligned}
$$

A sparse vector representation of the two rows would be given by

$$
\begin{aligned}
& \text { r1.val }=\left[\begin{array}{lllll}
2 & 3 & 1 & 4 & 5
\end{array}\right], \\
& \text { r1.pos }=\left[\begin{array}{lllll}
0 & 1 & 3 & 4 & 6
\end{array}\right] \text {, }
\end{aligned}
$$

A multiline vector representation of r 1 and r 2 is given by

$$
\begin{aligned}
\mathrm{ml} . \mathrm{val} & =\left[\begin{array}{lllllllllllll}
2 & 1 & 3 & 7 & 1 & 0 & 4 & 3 & 0 & 1 & 5 & 2
\end{array}\right], \\
\mathrm{ml} . \operatorname{pos} & =\left[\begin{array}{lllllll}
& 1 & 3 & 4 & 5 & 6 &] . \\
& & & & & &
\end{array}\right)
\end{aligned}
$$

NEW ORDER OF OPERATIONS

- Number of initially known pivots (i.e. \# rows of A and B) is large compared to \# rows of C and D.

NEW ORDER OF OPERATIONS

- Number of initially known pivots (i.e. \# rows of A and B) is large compared to \# rows of C and D.
- Most time of FL reduction is spent in TRSM step $A^{-1} B$.

NEW ORDER OF OPERATIONS

- Number of initially known pivots (i.e. \# rows of A and B) is large compared to \# rows of C and D.
- Most time of FL reduction is spent in TRSM step $A^{-1} B$.
- Only interested in D resp. rank of M?

NEW ORDER OF OPERATIONS

- Number of initially known pivots (i.e. \# rows of A and B) is large compared to \# rows of C and D.
- Most time of FL reduction is spent in TRSM step $A^{-1} B$.
- Only interested in D resp. rank of M ?

Change order of operations.

NEW ORDER OF OPERATIONS

- Number of initially known pivots (i.e. \# rows of A and B) is large compared to \# rows of C and D.
- Most time of FL reduction is spent in TRSM step $A^{-1} B$.
- Only interested in D resp. rank of M ?

Change order of operations.

1. Reduce C directly with A (store corresponding data in C).

NEW ORDER OF OPERATIONS

- Number of initially known pivots (i.e. \# rows of A and B) is large compared to \# rows of C and D.
- Most time of FL reduction is spent in TRSM step $A^{-1} B$.
- Only interested in D resp. rank of M ?

Change order of operations.

1. Reduce C directly with A (store corresponding data in C).
2. Carry out corresponding operations from B to D using updated C.

NEW ORDER OF OPERATIONS

- Number of initially known pivots (i.e. \# rows of A and B) is large compared to \# rows of C and D.
- Most time of FL reduction is spent in TRSM step $A^{-1} B$.
- Only interested in D resp. rank of M ?

Change order of operations.

1. Reduce C directly with A (store corresponding data in C).
2. Carry out corresponding operations from B to D using updated C.
3. Reduce D.

GBLA MATRIX FORMATS

- Matrices are pretty sparse, but structured.

GBLA MATRIX FORMATS

- Matrices are pretty sparse, but structured.
- GBLA supports two matrix formats, both use binary format.

GBLA MATRIX FORMATS

- Matrices are pretty sparse, but structured.
- GBLA supports two matrix formats, both use binary format.
- GBLA includes a converter between the two supported formats and can also dump to Magma matrix format.

GBLA MATRIX FORMATS

- Matrices are pretty sparse, but structured.
- GBLA supports two matrix formats, both use binary format.
- GBLA includes a converter between the two supported formats and can also dump to Magma matrix format.

Table 1: Old matrix format (legacy version)

Size	Length	Data	Description
uint32_t	1	b	version number
uint32_t	1	m	\# rows
uint32_t	1	n	\# columns
uint32_t	1	p	prime / field characteristic
uint64_t	1	nnz	\# nonzero entries
uint16_t	nnz	data	entry in matrix
uint32_t	nnz	cols	column index of entry
uint32_t	m	rows	length of rows

GBLA MATRIX FORMATS

Table 2: New matrix format (compressing data and cols)

Size	Length	Data	Description
uint32_t uint32_t uint32_t uint32_t uint64_t uint16_t uint32_t uint32_t	1 1 1 1 1 $n n z$ $n n z$ m	b m n p nnz data cols rows	```version number + information for data type of pdata # rows # columns prime / field characteristic # nonzero entries several rows are of type }\mp@subsup{x}{i}{}\mp@subsup{f}{j}{ can be compressed for consecutive elements length of rows```
uint32_t uint64_t uint64_t uint32_t uint64_t uint32_t xinty_t	m 1 k 1 1 pnb pnnz	pmap k colid pnb pnnz prow pdata	```maps rows to pdata size of compressed colid compression of columns: Single column entry masked via (1<< 31); s consecutive entries starting at column c are stored as "c s" # polynomials # nonzero coefficients in polynomials length of polynomial / row representation coefficients of polynomials```

GBLA MATRIX FORMATS - COMPARISON

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9	2.3 GB	0.74 GB	1.2 GB	0.29 GB	230 s	66 s
F5-kat17-mat10	43 GB	12 GB	24 GB	5.3 GB	4419 s	883 s

GBLA MATRIX FORMATS - COMPARISON

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9	2.3 GB	0.74 GB	1.2 GB	0.29 GB	230 s	66 s
F5-kat17-mat10	43 GB	12 GB	24 GB	5.3 GB	4419 s	883 s

New format vs. Old format

GBLA MATRIX FORMATS - COMPARISON

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9	2.3 GB	0.74 GB	1.2 GB	0.29 GB	230 s	66 s
F5-kat17-mat10	43 GB	12 GB	24 GB	5.3 GB	4419 s	883 s

New format vs. Old format

- $1 / 3$ rd of memory usage.

GBLA MATRIX FORMATS - COMPARISON

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9	2.3 GB	0.74 GB	1.2 GB	0.29 GB	230 s	66 s
F5-kat17-mat10	43 GB	12 GB	24 GB	5.3 GB	4419 s	883 s

New format vs. Old format

- $1 / 3$ rd of memory usage.
- $1 / 4$ th of memory usage when compressed with gzip.

GBLA MATRIX FORMATS - COMPARISON

Table 3: Storage and time efficiency of the new format

Matrix	Size old	Size new	gzipped old	gzipped new	Time old	Time new
F4-kat14-mat9	2.3 GB	0.74 GB	1.2 GB	0.29 GB	230 s	66 s
F5-kat17-mat10	43 GB	12 GB	24 GB	5.3 GB	4419 s	883 s

New format vs. Old format

- $1 / 3$ rd of memory usage.
- $1 / 4$ th of memory usage when compressed with gzip.
- Compression 4 - 5 times faster.

SOME BENCHMARKS

GBLA VS. FAUGÈRE-LACHARTRE

All timings in seconds.

| Implementation | FL Implementation | | GBLA v0.1 | | GBLA v0.2 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Matrix/Threads: | 1 | 16 | 32 | 1 | 16 | 32 | 1 | 16 | 32 |
| F5-kat13-mat5 | 16.7 | 2.7 | 2.3 | 14.5 | 2.02 | 1.87 | 14.5 | 1.73 | 1.61 |
| F5-kat13-mat6 | 27.3 | 4.15 | 4.0 | 23.9 | 3.08 | 2.65 | 25.9 | 3.03 | 2.28 |
| F5-kat14-mat7 | 139 | 17.4 | 16.6 | 142 | 13.4 | 10.6 | 122 | 11.2 | 8.64 |
| F5-kat14-mat8 | 181 | 24.95 | 23.1 | 177 | 16.9 | 12.7 | 158 | 14.7 | 10.5 |
| F5-kat15-mat7 | 629 | 61.8 | 55.6 | 633 | 55.1 | 38.2 | 553 | 46.3 | 30.7 |
| F5-kat16-mat6 | 1,203 | 110 | 83.3 | 1,147 | 98.7 | 69.9 | 988 | 73.9 | 49.0 |
| F5-mr-9-10-7-mat3 | 591 | 70.8 | 71.3 | 733 | 57.3 | 37.9 | 747 | 52.8 | 33.2 |
| F5-cyclic-10-mat20 | | | | 2,589 | 274 | 209 | 2,074 | 171 | 152 |
| F5-cyclic-10-sym-mat17 | | | | 2,463 | 465 | 405 | 2,391 | 275 | 245 |

GBLA VS. MAGMA V2.20-10

All timings in seconds.

| Implementation | Magma | GBLA v0.1 | | | GBLA v0.2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Matrix/Threads: | 1 | 1 | 16 | 32 | 1 | 16 | 32 |
| F4-kat12-mat9 | 11.2 | 11.4 | 1.46 | 1.60 | 11.3 | 1.40 | 1.40 |
| F4-kat13-mat2 | 0.94 | 1.18 | 0.38 | 0.61 | 1.11 | 0.26 | 0.33 |
| F4-kat13-mat3 | 9.33 | 11.0 | 1.70 | 3.10 | 8.51 | 1.07 | 1.13 |
| F4-kat13-mat9 | 168 | 165 | 16.0 | 11.8 | 114 | 9.74 | 6.83 |
| F4-kat14-mat8 | 2,747 | 2,545 | 207 | 165 | 1,338 | 104 | 65.8 |
| F4-kat15-mat7 | 10,345 | 9,514 | 742 | 537 | 4,198 | 298 | 195 |
| F4-kat15-mat8 | 13,936 | 12,547 | 961 | 604 | 6,508 | 470 | 283 |
| F4-kat15-mat9 | 24,393 | 22,247 | 1,709 | 1,256 | 10,923 | 779 | 450 |
| F4-rand16-d2-2-mat6 | | 4,902 | 375 | 219 | 3,054 | 224 | 133 |
| F4-rand16-d2-3-mat8 | | 48,430 | 3,473 | 2,119 | 26,533 | 1,782 | 1,027 |
| F4-rand16-d2-3-mat9 | | | 6,956 | 4,470 | | 3,214 | 1,776 |
| F4-rand16-d2-3-mat10 | | | 9,691 | 6,223 | | 3,820 | 1,972 |

Note that Magma generates slightly bigger matrices for the given examples.

[^0]OUTLOOK

DIFFERENT APPROACHES

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.

DIFFERENT APPROACHES

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- Connect GBLA to Singular to get a tentative F4.

DIFFERENT APPROACHES

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- Connect GBLA to Singular to get a tentative F4.
- Creation of a new open source plain C library GBTOOLS.

DIFFERENT APPROACHES

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- Connect GBLA to Singular to get a tentative F4.
- Creation of a new open source plain C library GBTOOLS.
- Deeper investigation on parallelization on networks.

DIFFERENT APPROACHES

- Optimizing GBLA for floating point and 32-bit unsigned int arithmetic.
- Connect GBLA to Singular to get a tentative F4.
- Creation of a new open source plain C library GBTOOLS.
- Deeper investigation on parallelization on networks.
- First steps exploiting heterogeneous CPU/GPU platforms for GBLA.

REFERENCES

葍 Buchberger，B．
Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal，
1965.

PhD thesis，Universtiy of Innsbruck，Austria
Buchberger，B．
A criterion for detecting unnecessary reductions in the construction of Gröbner bases， 1979.
EUROSAM＇79，An International Symposium on Symbolic and Algebraic Manipulation
國 Buchberger， B ．
Gröbner Bases：An Algorithmic Method in Polynomial Ideal Theory，
1985.

Multidimensional Systems Theory，D．Reidel Publication Company
Eder，C．and Faugère，J．－C．
A survey on signature－based Groebner basis algorithms， 2014. http：／／arxiv．org／abs／1404．1774
Faugère，J．－C．
A new efficient algorithm for computing Gröbner bases（F4）， 1999.
Journal of Pure and Applied Algebra
國 Faugère，J．－C．
A new efficient algorithm for computing Gröbner bases without reduction to zero（F5）， 2002.
Proceedings of the 2002 international symposium on Symbolic and
algebraic computation
Faugère，J．－C．and Lachartre，S．
Parallel Gaussian Elimination for Gröbner bases computations in finite fields， 2010.
Proceedings of the 4th International Workshop on Parallel and
Symbolic Computation
E．Gebauer，R．and Möller，H．M．
On an installation of Buchberger＇s algorithm， 1988.
Journal of Symbolic Computation

THANK YOU!

COMMENTS? QUESTIONS?

[^0]: ${ }^{1}$ Reconstruction fails due to memory consumption

