Nilpotent associative algebras and coclass theory

Bettina Eick and Tobias Moede

TU Braunschweig

SPP Jahrestagung, Osnabrück, Sep. 2015

Introduction

Introduction

Bettina Eick and Tobias Moede Nilpotent associative algebras and coclass theory

Associative Algebras

Associative Algebras

An associative algebra over a field $\mathbb F$ is a vector space over $\mathbb F$ equipped with an associative multiplication.

Identity

It is NOT assumed that an associative algebra contains an identity element.

Examples

Examples

- (1) Matrix algebras: subalgebras of $M_n(\mathbb{F})$, for example the upper triangular matrices with 0's on the diagonal.
- (2) Group algebras: $\mathbb{F}G$ where G is a finite group; these algebras always have an identity.
- (3) Quaternion algebras: certain 4-dimensional algebras; these also have an identity.

Nilpotency

Nilpotency

An associative algebra A is *nilpotent* if there exists $c \in \mathbb{N}$ so that every product of c + 1 elements in A is zero. The smallest c with this property is the class cl(A) of A.

Power Ideals

For an algebra A let A^i be the ideal spanned by all products of i elements in A. Then A is nilpotent of class c if and only if

$$A = A^1 > A^2 > \ldots > A^c > A^{c+1} = \{0\}.$$

Coclass

Coclass

Let A be a finite dimensional nilpotent associative algebra. Then the *coclass* of A is defined as

 $\dim(A) - cl(A).$

3 1 4 3

Examples I

Example

Let A be the subalgebra of $M_n(\mathbb{F})$ consisting of all upper triangular matrices with 0's on the diagonal.

- (1) A is nilpotent of dimension n(n-1)/2 and class n-1.
- (2) A has coclass n(n-1)/2 (n-1) = (n-1)(n-2)/2.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Examples II

Example

Let G be a finite p-group of order p^n , \mathbb{F} a finite field of characteristic p and $A = J(\mathbb{F}G)$.

- (1) A is nilpotent of dimension $p^n 1$ and class $p^l 1$, where l is the length of the Jennings series of G.
- (2) A has coclass $p^n 1 (p^l 1) = p^n p^l$.

< 同 > < 回 > < 回 > <

Significance

Structure theory (Wedderburn/Jacobson)

Let A be a finite dimensional associative algebra with identity.

(1) A/J(A) is a direct sum of full matrix algebras over skewfields.

(2) J(A) is a nilpotent associative algebra.

Classification

Classification

Bettina Eick and Tobias Moede Nilpotent associative algebras and coclass theory

General Aims

A wide open problem

Classify the finite dimensional nilpotent associative algebras over a field $\mathbb F$ up to isomorphism.

Using the dimension

Dimension

Classify the nilpotent associative algebras over $\mathbb F$ of dimension d:

- d = 1 is trivial: there is just one such algebra $C_1 = \langle a \mid a^2 = 0 \rangle$.
- d = 2 is easy: there are two such algebras $C_1 \oplus C_1$ and $C_2 = \langle a \mid a^3 = 0 \rangle$.
- d = 3 is known (Willem de Graaf), but not easy:
 If F is infinite, then there are infinitely many algebras.
 If F is finite, then there are |F| + 6 or |F| + 5 algebras.

Proceed with this? — Seems daunting.

Open problem

Higman

The number of isomorphism types of algebras of dimension n over \mathbb{F}_q is PORC (Polynomial on residue classes).

Open Problem

Is the number of isomorphism types of nilpotent associative algebras of dimension n over \mathbb{F}_q a PORC function?

Using the coclass

Question

Is it possible to classify the finite dimensional nilpotent associative algebras over $\mathbb F$ of coclass r?

Example: Coclass r = 0

This is easy! The resulting algebras are $C_n := \langle a \mid a^{n+1} = 0 \rangle$ for $n \in \mathbb{N}_0$.

Sounds promising?

A B F A B F

Why coclass?

Nilpotent Groups

Coclass theory has first been considered for finite *p*-groups, initiated by Leedham-Green and Newman. Result is a very useful structure theory!

Nilpotent Lie Algebras

It has also been considered for nilpotent Lie algebras, mainly due to Shalev and Zelmanov.

Nilpotent Associative Algebras

It seems a promising approach for associative algebras. The main aim of this DFG project was to investigate this.

Coclass Theory

Coclass Theory

Bettina Eick and Tobias Moede Nilpotent associative algebras and coclass theory

Coclass Graph

The coclass graph

Let \mathbb{F} be a field and $r \in \mathbb{N}_0$. The graph $\mathcal{G}_{\mathbb{F}}(r)$ is defined by:

- Vertices correspond one-to-one to isomorphism types of finite dimensional nilpotent associative F-algebras of coclass r;
- There is an edge $A \to B$ if $A \cong B/B^{cl(B)}$; that is, if B is a descendant of A.

Examples

Small Coclass

- $\mathcal{G}_{\mathbb{F}}(0)$ is easy for all fields \mathbb{F} .
- $\mathcal{G}_{\mathbb{F}}(1)$ is a tree with root $C_1 \oplus C_1$.
- $\mathcal{G}_{\mathbb{F}}(2)$ is again more complicated...

H N

Observations

Observation

In these small examples there are always finitely many infinite paths starting from the root.

First step

Investigate the infinite paths in $\mathcal{G}_{\mathbb{F}}(r)$!

Infinite paths

Pro-nilpotent algebras

Let $A_1 \to A_2 \to \ldots$ be an infinite path in $\mathcal{G}_{\mathbb{F}}(r)$ and let A be the inverse limit of this path. Then

(a) A is an infinite dimensional associative algebra.

(b)
$$A/A^{i+cl(A)} \cong A_i$$
 for all large enough i ; say $cc(A) = r$.

(c) Equivalent paths define isomorphic inverse limits.

Correspondence

The maximal infinite paths in $\mathcal{G}_{\mathbb{F}}(r)$ correspond one-to-one to the isomorphism types of infinite dimensional pro-nilpotent associative \mathbb{F} -algebras of coclass r.

Some definitions

Formal power series

(a) Let $\mathbb{F}[[t]]$ be the ring of formal power series over \mathbb{F} .

(b) Let $\mathbb{F}_o[[t]]$ be the ideal generated by t in $\mathbb{F}[[t]]$.

Annihilators

For an algebra A is (a) $Ann(A) = \{a \in A \mid ab = ba = 0 \text{ for all } b \in A\}.$ (b) $Ann_0(A) = \{0\}$ and $Ann_i(A) = Ann(A/Ann_{i-1}(A))$ for $i \ge 1$. (c) $Ann_*(A) = \bigcup_{i \in \mathbb{N}} Ann_i(A).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

A structure theorem

The following theorem exhibits the structure of the inverse limits of the infinite paths in $\mathcal{G}_{\mathbb{F}}(r)$.

Theorem (Eick & Moede)

Let \mathbb{F} be a field and $r \in \mathbb{N}_0$. A is isomorphic to the inverse limit of an infinite path in $\mathcal{G}_{\mathbb{F}}(r)$ if and only if $dim(Ann_*(A)) = r$ and $A = Ann_*(A) \rtimes \mathbb{F}_0[[t]]$.

In other words

Let \mathbb{F} be a field and $r \in \mathbb{N}_0$. Each infinite path in $\mathcal{G}_{\mathbb{F}}(r)$ can be constructed as split extension of an r-dimensional nilpotent algebra with $\mathbb{F}_o[[t]]$.

伺 ト イヨト イヨト

Application

Numbers

Let $n_{\mathbb{F}}(r)$ denote the number of maximal infinite paths in $\mathcal{G}_{\mathbb{F}}(r)$.

- (a) $n_{\mathbb{F}}(0) = 1$ for all fields \mathbb{F} .
- (b) $n_{\mathbb{F}}(1) = 1$ for all fields \mathbb{F} .

(c) $n_{\mathbb{F}}(2) = \infty$ if \mathbb{F} is infinite and $n_{\mathbb{F}}(2) = |\mathbb{F}| + 4$ if \mathbb{F} is finite.

Theorem (Eick & Moede)

 $n_{\mathbb{F}}(r)$ is finite if and only if $r \leq 1$ or \mathbb{F} is finite.

э

Algorithms

Algorithms

Bettina Eick and Tobias Moede Nilpotent associative algebras and coclass theory

(□) < (□) <</p>

Descendants

Descendants

An associative algebra B is a descendant of A if $A \cong B/B^{cl(A)+1}$.

Descendant tree

Given A in $\mathcal{G}_{\mathbb{F}}(r)$ we denote with \mathcal{T}_A the full subtree of $\mathcal{G}_{\mathbb{F}}(r)$ of descendants of A.

Maximal descendant tree

A descendant tree \mathcal{T}_A is maximal if it is not properly contained in another descendant tree; that is, if $A = \{0\}$ or $A/A^{cl(A)}$ has coclass smaller than r.

Algorithm I

Immediate descendants

Let \mathbb{F} be a finite field. Developed an effective algorithm to determine up to isomorphism all immediate descendants of an algebra A (in $\mathcal{G}_{\mathbb{F}}(r)$).

Ingredients

- (a) Compute Aut(A).
- (b) Compute the multiplication M and the nucleus N of A. (N is a subspace of the finite dimensional vectorspace M.)
- (c) Compute the natural action of Aut(A) on M.

rm (d) Compute orbits and stabilizers of all supplements to N in M.

Algorithm II

Theorem (Eick & Moede)

Let \mathbb{F} be a finite field. Then $\mathcal{G}_{\mathbb{F}}(r)$ consists of finitely many maximal descendant trees. The roots of these trees have dimension at most 2r.

Roots

Let \mathbb{F} be a finite field. Developed an effective algorithm to determine up to isomorphism the roots of $\mathcal{G}_{\mathbb{F}}(r)$.

Applications

Application

Algorithm I and II allow to investigate $\mathcal{G}_{\mathbb{F}}(r)$.

- (a) Compute the roots of the maximal descendant trees.
- (b) Compute iteratedly immediate descendants of these roots and their descendants.
- (c) Yields large finite parts of the infinite graph $\mathcal{G}_{\mathbb{F}}(r)$.

A B K A B K

Experiments

Experiments

Determined finite parts of $\mathcal{G}_{\mathbb{F}}(r)$ for many finite fields and various r.

Result

Many detailed insights into the structure of $\mathcal{G}_{\mathbb{F}}(r)$.

Periodic patterns

Periodic patterns

Bettina Eick and Tobias Moede Nilpotent associative algebras and coclass theory

Coclass trees

Coclass trees

A descendant tree \mathcal{T}_A in $\mathcal{G}_{\mathbb{F}}(r)$ is a *coclass tree* if it has a unique infinite path.

Maximal coclass trees

A coclass tree is maximal if it is not properly contained in another coclass tree.

Theorem (Eick & Moede)

Let \mathbb{F} be a finite field and $r \in \mathbb{N}_0$. Then $\mathcal{G}_{\mathbb{F}}(r)$ consists of finitely many maximal coclass trees and finitely many other vertices.

Periodicity

Periodicity

Let \mathcal{T} be a maximal coclass tree with root A and infinite path $A = A_1 \rightarrow A_2 \rightarrow \dots$

- (a) \mathcal{T} is virtually periodic with period d and periodic root A_l if \mathcal{T}_{A_i} and $\mathcal{T}_{A_{i+d}}$ are graph isomorphic for each $i \geq l$.
- (b) \mathcal{T} has depth k if every vertex in \mathcal{T} has distance at most k from the infinite path.

A B K A B K

Conjectures

Conjecture (Eick & Moede)

Let \mathbb{F} be a finite field and $r \in \mathbb{N}_0$. Then each maximal coclass tree \mathcal{T} in $\mathcal{G}_{\mathbb{F}}(r)$ is virtually periodic and has finite depth.

Conjecture (Eick & Moede)

Let \mathbb{F} be a finite field and $r \in \mathbb{N}_0$. The infinitely many algebras in $\mathcal{G}_{\mathbb{F}}(r)$ can be described by finitely many parametrised presentations.

Implications

If the conjectures hold, then the infinitely many nilpotent associative \mathbb{F} -algebras of coclass r can be classified!

<日</td>

Coclass 1

Conjecture (Eick & Moede)

Let \mathbb{F} be a finite field. Then $\mathcal{G}_{\mathbb{F}}(1)$ consists of a single coclass tree. This is periodic with period $|\mathbb{F}| - 1$ and depth 1.

Coclass 2

Conjecture (Eick & Moede)

Let \mathbb{F} be a finite field of char p > 2 and size q. Then $\mathcal{G}_{\mathbb{F}}(2)$ consists of 3q + 6 maximal descendant trees. Of these, 2q + 2 are finite and q + 4 are maximal coclass trees. The maximal coclass trees are all virtually periodic with

- (a) There are q + 1 maximal coclass trees of depth 1 and period q 1;
- (b) There is 1 maximal coclass tree of depth 1 and period 1;
- (c) There are 2 maximal coclass trees of depth 2 and period p(q-1);

Coclass 2

Conjecture (Eick & Moede)

Let \mathbb{F} be a finite field of char p = 2 and size q. Then $\mathcal{G}_{\mathbb{F}}(2)$ consists of 3q + 5 maximal descendant trees. Of these, 2q + 1 trees are finite and q + 4 are maximal coclass trees. The maximal coclass trees are all virtually periodic with

- (a) There are q + 3 maximal coclass trees of depth 1 and period q 1;
- (b) There is 1 maximal coclass tree of depth 2 and period p(q-1);