Nilpotent associative algebras and coclass theory

Bettina Eick and Tobias Moede

TU Braunschweig
SPP Jahrestagung, Osnabrück, Sep. 2015

Introduction

Introduction

Associative Algebras

Associative Algebras

An associative algebra over a field \mathbb{F} is a vectorspace over \mathbb{F} equipped with an associative multiplication.

Identity

It is NOT assumed that an associative algebra contains an identity element.

Examples

Examples

(1) Matrix algebras: subalgebras of $M_{n}(\mathbb{F})$, for example the upper triangular matrices with 0 's on the diagonal.
(2) Group algebras: $\mathbb{F} G$ where G is a finite group; these algebras always have an identity.
(3) Quaternion algebras: certain 4-dimensional algebras; these also have an identity.

Nilpotency

Nilpotency

An associative algebra A is nilpotent if there exists $c \in \mathbb{N}$ so that every product of $c+1$ elements in A is zero. The smallest c with this property is the $\operatorname{class} \operatorname{cl}(A)$ of A.

Power Ideals

For an algebra A let A^{i} be the ideal spanned by all products of i elements in A. Then A is nilpotent of class c if and only if

$$
A=A^{1}>A^{2}>\ldots>A^{c}>A^{c+1}=\{0\} .
$$

Coclass

Coclass

Let A be a finite dimensional nilpotent associative algebra. Then the coclass of A is defined as

$$
\operatorname{dim}(A)-\operatorname{cl}(A) .
$$

Examples I

Example

Let A be the subalgebra of $M_{n}(\mathbb{F})$ consisting of all upper triangular matrices with 0 's on the diagonal.
(1) A is nilpotent of dimension $n(n-1) / 2$ and class $n-1$.
(2) A has coclass $n(n-1) / 2-(n-1)=(n-1)(n-2) / 2$.

Examples II

Example

Let G be a finite p-group of order p^{n}, \mathbb{F} a finite field of characteristic p and $A=J(\mathbb{F} G)$.
(1) A is nilpotent of dimension $p^{n}-1$ and class $p^{l}-1$, where l is the length of the Jennings series of G.
(2) A has coclass $p^{n}-1-\left(p^{l}-1\right)=p^{n}-p^{l}$.

Significance

Structure theory (Wedderburn/Jacobson)
Let A be a finite dimensional associative algebra with identity.
(1) $A / J(A)$ is a direct sum of full matrix algebras over skewfields.
(2) $J(A)$ is a nilpotent associative algebra.

Classification

Classification

General Aims

A wide open problem
Classify the finite dimensional nilpotent associative algebras over a field \mathbb{F} up to isomorphism.

Using the dimension

Dimension

Classify the nilpotent associative algebras over \mathbb{F} of dimension d :

- $d=1$ is trivial: there is just one such algebra $C_{1}=\left\langle a \mid a^{2}=0\right\rangle$.
- $d=2$ is easy:
there are two such algebras $C_{1} \oplus C_{1}$ and $C_{2}=\left\langle a \mid a^{3}=0\right\rangle$.
- $d=3$ is known (Willem de Graaf), but not easy:

If \mathbb{F} is infinite, then there are infinitely many algebras. If \mathbb{F} is finite, then there are $|\mathbb{F}|+6$ or $|\mathbb{F}|+5$ algebras.

Proceed with this? - Seems daunting.

Open problem

Higman

The number of isomorphism types of algebras of dimension n over \mathbb{F}_{q} is PORC (Polynomial on residue classes).

Open Problem

Is the number of isomorphism types of nilpotent associative algebras of dimension n over \mathbb{F}_{q} a PORC function?

Using the coclass

Question

Is it possible to classify the finite dimensional nilpotent associative algebras over \mathbb{F} of coclass r ?

Example: Coclass $r=0$

This is easy! The resulting algebras are $C_{n}:=\left\langle a \mid a^{n+1}=0\right\rangle$ for $n \in \mathbb{N}_{0}$.

Sounds promising?

Why coclass?

Nilpotent Groups

Coclass theory has first been considered for finite p-groups, initiated by Leedham-Green and Newman. Result is a very useful structure theory!

Nilpotent Lie Algebras

It has also been considered for nilpotent Lie algebras, mainly due to Shalev and Zelmanov.

Nilpotent Associative Algebras

It seems a promising approach for associative algebras. The main aim of this DFG project was to investigate this.

Coclass Theory

Coclass Theory

Coclass Graph

The coclass graph

Let \mathbb{F} be a field and $r \in \mathbb{N}_{0}$. The graph $\mathcal{G}_{\mathbb{F}}(r)$ is defined by:

- Vertices correspond one-to-one to isomorphism types of finite dimensional nilpotent associative \mathbb{F}-algebras of coclass r;
- There is an edge $A \rightarrow B$ if $A \cong B / B^{c l(B)}$; that is, if B is a descendant of A.

Examples

Small Coclass

- $\mathcal{G}_{\mathbb{F}}(0)$ is easy for all fields \mathbb{F}.
- $\mathcal{G}_{\mathbb{F}}(1)$ is a tree with root $C_{1} \oplus C_{1}$.
- $\mathcal{G}_{\mathbb{F}}(2)$ is again more complicated...

Observations

Observation

In these small examples there are always finitely many infinite paths starting from the root.

First step

Investigate the infinite paths in $\mathcal{G}_{\mathbb{F}}(r)$!

Infinite paths

Pro-nilpotent algebras

Let $A_{1} \rightarrow A_{2} \rightarrow \ldots$ be an infinite path in $\mathcal{G}_{\mathbb{F}}(r)$ and let A be the inverse limit of this path. Then
(a) A is an infinite dimensional associative algebra.
(b) $A / A^{i+c l(A)} \cong A_{i}$ for all large enough i; say $c c(A)=r$.
(c) Equivalent paths define isomorphic inverse limits.

Correspondence

The maximal infinite paths in $\mathcal{G}_{\mathbb{F}}(r)$ correspond one-to-one to the isomorphism types of infinite dimensional pro-nilpotent associative \mathbb{F}-algebras of coclass r.

Some definitions

Formal power series

(a) Let $\mathbb{F}[[t]]$ be the ring of formal power series over \mathbb{F}.
(b) Let $\left.\mathbb{F}_{o}[t t]\right]$ be the ideal generated by t in $\mathbb{F}[t t]$.

Annihilators

For an algebra A is
(a) $\operatorname{Ann}(A)=\{a \in A \mid a b=b a=0$ for all $b \in A\}$.
(b) $A n n_{0}(A)=\{0\}$ and $A n n_{i}(A)=A n n\left(A / A n n_{i-1}(A)\right)$ for $i \geq 1$.
(c) $A n n_{*}(A)=\cup_{i \in \mathbb{N}} A n n_{i}(A)$.

A structure theorem

The following theorem exhibits the structure of the inverse limits of the infinite paths in $\mathcal{G}_{\mathbb{F}}(r)$.

Theorem (Eick \& Moede)

Let \mathbb{F} be a field and $r \in \mathbb{N}_{0}$.
A is isomorphic to the inverse limit of an infinite path in $\mathcal{G}_{\mathbb{F}}(r)$ if and only if $\operatorname{dim}\left(A n n_{*}(A)\right)=r$ and $A=A n n_{*}(A) \rtimes \mathbb{F}_{0}[[t]]$.

In other words

Let \mathbb{F} be a field and $r \in \mathbb{N}_{0}$.
Each infinite path in $\mathcal{G}_{\mathbb{F}}(r)$ can be constructed as split extension of an r-dimensional nilpotent algebra with $\mathbb{F}_{o}[[t]]$.

Application

Numbers

Let $n_{\mathbb{F}}(r)$ denote the number of maximal infinite paths in $\mathcal{G}_{\mathbb{F}}(r)$.
(a) $n_{\mathbb{F}}(0)=1$ for all fields \mathbb{F}.
(b) $n_{\mathbb{F}}(1)=1$ for all fields \mathbb{F}.
(c) $n_{\mathbb{F}}(2)=\infty$ if \mathbb{F} is infinite and $n_{\mathbb{F}}(2)=|\mathbb{F}|+4$ if \mathbb{F} is finite.

Theorem (Eick \& Moede)

$n_{\mathbb{F}}(r)$ is finite if and only if $r \leq 1$ or \mathbb{F} is finite.

Algorithms

Algorithms

Descendants

Descendants

An associative algebra B is a descendant of A if $A \cong B / B^{c l(A)+1}$.

Descendant tree

Given A in $\mathcal{G}_{\mathbb{F}}(r)$ we denote with \mathcal{T}_{A} the full subtree of $\mathcal{G}_{\mathbb{F}}(r)$ of descendants of A.

Maximal descendant tree

A descendant tree \mathcal{T}_{A} is maximal if it is not properly contained in another descendant tree; that is, if $A=\{0\}$ or $A / A^{c l(A)}$ has coclass smaller than r.

Algorithm I

Immediate descendants

Let \mathbb{F} be a finite field. Developed an effective algorithm to determine up to isomorphism all immediate descendants of an algebra A (in $\left.\mathcal{G}_{\mathbb{F}}(r)\right)$.

Ingredients

(a) Compute $\operatorname{Aut}(A)$.
(b) Compute the multiplication M and the nucleus N of A. (N is a subspace of the finite dimensional vectorspace M.)
(c) Compute the natural action of $\operatorname{Aut}(A)$ on M.
rm (d) Compute orbits and stabilizers of all supplements to N in M.

Algorithm II

Theorem (Eick \& Moede)

Let \mathbb{F} be a finite field. Then $\mathcal{G}_{\mathbb{F}}(r)$ consists of finitely many maximal descendant trees. The roots of these trees have dimension at most $2 r$.

Roots

Let \mathbb{F} be a finite field. Developed an effective algorithm to determine up to isomorphism the roots of $\mathcal{G}_{\mathbb{F}}(r)$.

Applications

Application

Algorithm I and II allow to investigate $\mathcal{G}_{\mathbb{F}}(r)$.
(a) Compute the roots of the maximal descendant trees.
(b) Compute iteratedly immediate descendants of these roots and their descendants.
(c) Yields large finite parts of the infinite graph $\mathcal{G}_{\mathbb{F}}(r)$.

Experiments

Experiments

Determined finite parts of $\mathcal{G}_{\mathbb{F}}(r)$ for many finite fields and various r.

Result

Many detailed insights into the structure of $\mathcal{G}_{\mathbb{F}}(r)$.

Periodic patterns

Periodic patterns

Coclass trees

Coclass trees

A descendant tree \mathcal{T}_{A} in $\mathcal{G}_{\mathbb{F}}(r)$ is a coclass tree if it has a unique infinite path.

Maximal coclass trees

A coclass tree is maximal if it is not properly contained in another coclass tree.

Theorem (Eick \& Moede)

Let \mathbb{F} be a finite field and $r \in \mathbb{N}_{0}$. Then $\mathcal{G}_{\mathbb{F}}(r)$ consists of finitely many maximal coclass trees and finitely many other vertices.

Periodicity

Periodicity

Let \mathcal{T} be a maximal coclass tree with root A and infinite path $A=A_{1} \rightarrow A_{2} \rightarrow \ldots$
(a) \mathcal{T} is virtually periodic with period d and periodic root A_{l} if $\mathcal{T}_{A_{i}}$ and $\mathcal{T}_{A_{i+d}}$ are graph isomorphic for each $i \geq l$.
(b) \mathcal{T} has depth k if every vertex in \mathcal{T} has distance at most k from the infinite path.

Conjectures

Conjecture (Eick \& Moede)

Let \mathbb{F} be a finite field and $r \in \mathbb{N}_{0}$. Then each maximal coclass tree \mathcal{T} in $\mathcal{G}_{\mathbb{F}}(r)$ is virtually periodic and has finite depth.

Conjecture (Eick \& Moede)

Let \mathbb{F} be a finite field and $r \in \mathbb{N}_{0}$. The infinitely many algebras in $\mathcal{G}_{\mathbb{F}}(r)$ can be described by finitely many parametrised presentations.

Implications

If the conjectures hold, then the infinitely many nilpotent associative \mathbb{F}-algebras of coclass r can be classified!

Coclass 1

Conjecture (Eick \& Moede)

Let \mathbb{F} be a finite field. Then $\mathcal{G}_{\mathbb{F}}(1)$ consists of a single coclass tree. This is periodic with period $|\mathbb{F}|-1$ and depth 1 .

Coclass 2

Conjecture (Eick \& Moede)

Let \mathbb{F} be a finite field of char $p>2$ and size q. Then $\mathcal{G}_{\mathbb{F}}(2)$ consists of $3 q+6$ maximal descendant trees. Of these, $2 q+2$ are finite and $q+4$ are maximal coclass trees. The maximal coclass trees are all virtually periodic with
(a) There are $q+1$ maximal coclass trees of depth 1 and period $q-1$;
(b) There is 1 maximal coclass tree of depth 1 and period 1 ;
(c) There are 2 maximal coclass trees of depth 2 and period $p(q-1)$;

Coclass 2

Conjecture (Eick \& Moede)

Let \mathbb{F} be a finite field of char $p=2$ and size q. Then $\mathcal{G}_{\mathbb{F}}(2)$ consists of $3 q+5$ maximal descendant trees. Of these, $2 q+1$ trees are finite and $q+4$ are maximal coclass trees. The maximal coclass trees are all virtually periodic with
(a) There are $q+3$ maximal coclass trees of depth 1 and period $q-1$;
(b) There is 1 maximal coclass tree of depth 2 and period $p(q-1)$;

