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Introduction: Cox rings and universal torsors
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What are Cox rings?

The Cox ring of a variety X over C is a Pic(X )-graded C-algebra

⊕
Pic(X)

H0
(X ,OX (D)).

Introduced by Hu and Keel in 2000 to study Mori Dream Spaces.

Precursory work of Cox in 1995 on homogeneous coordinate rings of
toric varieties.

Example: P1 × P1

Picard group: Z2,

Cox ring: C[x0, x1, y0, y1],

deg x0 = deg x1 = (1,0),

deg y0 = deg y1 = (0,1).

x0

y0

x1

y1
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Why Cox rings

A variety X is a Mori Dream Space ⇐⇒ its Cox ring is finitely generated.

If X has a finitely generated Cox ring R,

SpecR
open
⊃ Y

//H
Ð→

univ. torsor
X

Y = SpecX R, where R is a Cox sheaf of X .

X -torsor under H: étale locally X ×H.

Universal torsors are special torsors under quasitori.
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Torsors under quasitori

k field, k sep. closure, g = Gal(k/k), X geom. integral k-variety, k[Xk]
× = k

×

.

The quasitorus associated to a g-module M is M̂ ∶= Spec k[M]g.

X -torsors under M̂ are classified by H1
ét(X , M̂):

0Ð→ H1
ét(k , M̂)Ð→ H1

ét(X , M̂)
type
Ð→ Homg−mod(M,Pic(Xk)).

Universal torsors of X are torsors with M = Pic(Xk) and type idPic(X
k
).

Question: what are “Cox rings” for torsors of arbitrary type over arbitrary
fields?
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Generalized Cox sheaves and Cox rings
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k field, k sep. closure, g = Gal(k/k), X geom. integral k-variety, k[Xk]
× = k

×

,

λ ∶M → Pic(Xk)

Definition

(k = k) A generalized Cox sheaf
ring

of X of type λ is an M-graded

OX -
k-

algebra ⊕m∈M OX (Dm)

⊕m∈M H0(X ,OX (Dm))

, where [Dm] = λ(m)

∀m ∈M, and the multiplication is compatible with the sum
of divisors.

(k arbitrary) A generalized Cox sheaf
ring

of X of type λ is an OX -
k-

algebra R

such that R⊗k k has a structure of generalized Cox sheaf
ring

of

Xk of type λ which is compatible with the induced g-action.
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Classification theorem

k field, k sep. closure, g = Gal(k/k), X geom. integral k-variety, k[X
k
]× = k

×

, λ ∶M → Pic(X
k
)

{
Cox sheaves of X

of type λ
} {

Cox rings of X
of type λ

}

{X -torsors of type λ}

R↦R(X )

R↦ Spec
X R1:1π

∗O
Y ←[ Y π

→ X

?

R↦R(X ) is ess. inj. if M = ⟨m ∈M ∶ λ(m) effective⟩ =∶Meff.

The automorphism group of a Cox sheaf of Xk of type λ is

M̂(k) = Hom(M, k
×
). For a Cox ring of type λ it is M̂eff(k).

Isomorphism classes of Cox sheaves of X of type λ are classified by
H1

ét(k , M̂).
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k field, k sep. closure, g = Gal(k/k), X geom. integral k-variety, k[X
k
]× = k

×

, λ ∶M → Pic(X
k
)

Proposition (k = k)

Let R be a Cox sheaf of X of type λ. If R(X ) is finitely generated as
k-algebra, and ∃ f1, . . . , ft ∈R(X ) nonzero and homogeneous such that
X ∖ Supp(div(fi)) are affine and cover X , then

SpecX R ≅ SpecR(X ) ∖V (f1, . . . , ft).

Remarks

If λ(M) contains an ample divisor class, f1, . . . , ft as above exist.

If X and R are defined over a nonclosed k , the isomorphism above is
g-equivariant.
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Pullback and computations
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Pullback

k field, k sep. closure, g = Gal(k/k), X geom. integral k-variety, k[X
k
]× = k

×

, λ ∶M → Pic(X
k
)

Proposition (k = k)

Let R be a Cox sheaf/ring of X of type λ, and ϕ ∶M ′ →M a group
homomorphism. The pullback of R =⊕m∈MRm under ϕ

ϕ∗R ∶= ⊕
m′∈M′

Rϕ(m′)

is a Cox sheaf/ring of X of type λ ○ ϕ.

Remark

The pullback is g-equivariant.

With ϕ = λ, a Cox ring of type λ is the pullback of a Cox ring of type
idPic(X).

The pullback preserves finite generation.
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Trivial example

X = P1 × P1

Picard group: Z2,

Cox ring: C[x0, x1, y0, y1],

deg x0 = deg x1 = (1,0),

deg y0 = deg y1 = (0,1).

x0

y0

x1

y1

A generalized Cox ring of X of type

λ ∶ Z→ Z2, a ↦ (a,−a),

is
λ∗C[x0, x1, y0, y1] =⊕

a∈Z
C[x0, x1, y0, y1](a,−a) = C.

In this case, M = Z and Meff = {0}.

Marta Pieropan Pullback and computations 30.09.2015 13 / 21



Computations via pullback (k = k)

Over C, finitely generated Cox rings of type idPic(X) have been
computed for many varieties. See work of Altmann, Batyrev,
Berchtold, Castravet, Derenthal, Hassett, Hausen, Keicher, Laface,
Popov, Testa, Tevelev, Tschinkel, Várilly-Alvarado, Velasco,. . .

Every generalized Cox ring is the pullback of a Cox ring of type
idPic(X) under the type map λ ∶M → Pic(X ).

The pullback preserves finite generation.
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General strategy (λ injective)

k = k sep. closed field, X integral k-variety, k[X ]× = k×, λ ∶M↪Pic(X )

Generators

If

R = k[η1, . . . , ηN]/I is a Cox ring of type idPic(X),

η1, . . . , ηN homogeneous of degrees [D1], . . . , [DN],

the Cox ring λ∗R =⊕m∈MRλ(m) of type λ is generated by the monomials

ηa1
1 . . . ηaNN s. t. [a1D1 + ⋅ ⋅ ⋅ + aNDN] ∈ λ(M).

If Pic(X ) is free, finding the generators is the same as solving a system of
integral linear equations in Z≥0.
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General strategy (λ injective)

k = k sep. closed field, X integral k-variety, k[X ]× = k×, λ ∶M↪Pic(X )

Relations

If

R = k[η1, . . . , ηN]/I is a Cox ring of type idPic(X),

ξ1, . . . , ξN′ ∈ R are the generators of λ∗R

it remains to compute the kernel of

k[ξ1, . . . , ξN′]→ R.

Fact: If M contains an ample divisor class,

dimλ∗R = dimX + rankM = dimR + rankM − rank Pic(X ).

→ If N ′ = dimλ∗R + 1, it is enough to find one irreducible relation.
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An arithmetic application
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Arithmetic motivation

Universal torsors and Cox rings are used to study the distribution of
rational points on (quasi)-Fano varieties with respect to anticanonical
height functions

H ∶ X (k)→ R≥0.

Conjecture (Manin, 1989):
If k is a number field and X (k) is dense in X , then there is an open subset
U ⊆ X such that

#{x ∈ U(k) ∶ H(x) ≤ B} ∼ CB(logB)
r−1,

where C > 0 and r = rk Pic(X ).

Universal torsors have been used mostly for split varieties (i.e. with trivial
Galois action on Pic(Xk)). Some proofs of Manin’s conjecture for certain
non-split varieties use other torsors of injective type.
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Application:

Generalized Cox rings of type Pic(X ) ⊆ Pic(Xk) explain parameterizations
in proofs of Manin’s conjecture for some non-split varieties.

Example: Châtelet surfaces

Let X be a Châtelet surface:

x2
+ y2

= P(z).

The Picard group of XQ is generated by the classes of the divisors

D+
0

D−
0

D−
1 D−

2 D−
3 D−

4

D+
1 D+

2 D+
3 D+

4

a Cox ring of XQ of type idPic(XQ)
has 10 generators and 2 quadratic

relations.
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Cox(XQ) = Q[η±0 , . . . , η
±

4 ]/(∆i,jη
+

l η
−

l +∆j,lη
+

i η
−

i +∆l,iη
+

j η
−

j )1≤i<j<l≤4

Theorem (de la Bretèche - Browning - Peyre, 2012)

Manin’s conjecture holds for

x2
+ y2

= L1(z)L2(z)L3(z)L4(z).

The proof uses both torsors of type Pic(X ) ⊆ Pic(XQ) and of type
idPic(XQ)

.

idPic(XQ)
: Q[x0, y0, . . . , x4, y4]/(∆i,j(x2

l + y 2
l )+∆j,l(x2

i + y 2
i )+∆l,i(x2

j + y 2
j ))1≤i<j<l≤4

via xi = η+i + iη−i , yi = η+i − iη−i .

Pic(X) ⊆ Pic(XQ): 5 generators x + iy = η+0 ∏4
j=0 η

+

j , x − iy = η−0 ∏4
j=0 η

−

j ,
t = η+0 η−0 , Lj(u, v) = η+j η−j , j ∈ {1, . . . ,4},

1 relation x2 + y 2 = t2L1(u, v)L2(u, v)L3(u, v)L4(u, v).
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Theorem (Destagnol, 2015)

Manin’s conjecture holds for

x2
+ y2

= L1(z)L2(z)Q(z),

Q irreducible over Q(i).

The proof uses torsors of type Pic(X ) ⊆ Pic(Xk) and of type

⟨D̄±
0 , D̄

±
1 , D̄

±
2 , D̄

+
3 + D̄+

4 , D̄
−
3 + D̄−

4 ⟩ ⊆ Pic(Xk).

Thank you for your attention.
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