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Generalized Fermat equations

We consider the problem of solving the equation xp + yq + z r = 0
for fixed exponents p, q, r and in integers x , y , z which are pairwise
coprime.

(Some) known results
I Wiles et al. : {p, q, r} = {n, n, n}
I Darmon–Merel: {p, q, r} = {2, n, n}, {3, n, n}
I Bennett: {p, q, r} = {2n, 2n, 5}
I Elkies: {p, q, r} = {2, 4, `} for ` ≥ 211
I Siksek–Anni: {p, q, r} = {2l , 2m, p} for 3 ≤ p ≤ 13 (and

more if someone is willing to share a stronger computer...)
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Generalized Fermat equations

We consider the family x2 + y3 = z r where r ≥ 7 and its coprime
solutions

Known results
I Poonen–Schaefer–Stoll for r = 7
I Bruin: r = 8, 9
I Zureick-Brown: r = 10
I Siksek–Stoll: r = 15

The remaining open cases are r = p ≥ 11 a prime and r = 25
(Freitas–Stoll, a work in progress).
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Problem
Let p ≥ 11 be a prime. Let (a, b, c) be a solution to the equation

x2 + y3 = zp

such that (a, b, c) = 1 and abc 6= 0.
Find the explicit list of such triples (a, b, c).

We call such solutions primitive.

Work of Darmon and Granville implies that for each prime p the
list of such solutions is finite (using Faltings’ resolution of
Mordell’s conjecture).

For c = 1 we have a pair of Catalan solutions (a, b, c) = (±3, 2, 1).
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Frey curve
To a putative primitive solution (a, b, c) of x2 + y3 = zp with
p ≥ 7 we can attach a Frey curve

E(a,b,c) : y2 = x3 + 3bx − 2a

of discriminant ∆ = −123cp and j-invariant j = 123b3

cp .

Theorem 1 (Generalization of Poonen-Schaefer-Stoll)
Let p ≥ 7 and (a, b, c) be coprime integers satisfying a2 + b3 = cp

and c 6= 0. Assume that the Galois representation on E(a,b,c)[p] is
irreducible.Then there exists a quadratic twist E (d)

(a,b,c) of E(a,b,c)

with d ∈ {±1,±2,±3,±6} such that E (d)
(a,b,c)[p] is isomorphic to

E [p] as a GQ-Galois module, where E is one of the following
elliptic curves (specified by their Cremona label):

27a1, 54a1, 96a1, 288a1, 864a1, 864b1, 864c1 .
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For prime p ≥ 17 and p = 11 the Galois module E (d)
(a,b,c)[p] is

irreducible for primitive solutions (a, b, c).

To prove the theorem we apply Tate’s algorithm to first show that
the conductor of the twist E (d)

(a,b,c) has the form 123N where N is a
product of primes dividing c. Then application of level-lowering
leaves us with a finite list of modular forms of suitable levels.

All but one of them correspond to elliptic curves over Q. For a
newform of level 864 with coefficients in Q(

√
13) we apply the

Loeffler-Weinstein algorithm and a result of Kraus.

Irreducibility of the Galois module E (d)
(a,b,c)[p] is a direct

consequence of Mazur’s results.
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Primitive solutions to x2 + y3 = zp can be detected by branched
Galois covering X → P1 defined over Q with three ramified points
0, 123,∞ of ramification indices 3, 2, p. We consider X = X (p) a
modular curve which classifies pairs (E , φ) where

φ : E [p]→ µp × Z/pZ

is an isomorphism of Galois modules which respects the Weil
pairing. The natural forgetful map j : X (p)→ X (1) satisfies the
required properties.

Following Darmon and Granville for each p there exists a number
field K such that the finite set j(X (p)(K )) contains points that
correspond to the primitive solutions of x2 + y3 = zp.

In general the field K might be of large degree so we construct
rather a finite list of twists X ′ → P1 where X ′ ∼= Q X (p) and for
each twist X ′ which is defined over Q compute the points X ′(Q)
that correspond to primitive solutions of x2 + y3 = zp.
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For two elliptic curves E1 and E2 over a field K we say that the
Galois modules E1[p] and E2[p] are symplectically isomorphic if the
isomorphism of Galois modules φ : E1[p]→ E2[p] respects the Weil
pairing ep. We call φ anti-symplectic if

ep(φ(P), φ(Q)) = ep(P,Q)r

for all P,Q ∈ E1[n] where r is a non-square in F×p .

Composition of φ with multiplication by n (coprime with p) on E1
changes the Weil pairing exponent by n2. We consider a fixed
curve E and denote by XE ′(p) a modular curve that classifies pairs
(E , φ) where φ : E [p]→ E ′[p] is a symplectic Galois invariant
isomorphism. We denote by X−E ′(p) an analogous curve which
classifies pairs (E , φ) where φ is anti-symplectic.
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This table is valid for p ≥ 17 (and also for p = 11). We classify all
possible twists that might come with a primitive solution to
x2 + y3 = zp.

p mod 24 27a1 54a1 96a1 288a1 864a1 864b1 864c1
1 + + + + +
5 + − + +− +− +−
7 − + + + + +

11 + + + +− + + +
13 − + + +
17 + + + + +
19 + − +− +− +− +−
23 + + + + +
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In consequence for each choice of congruence classes a mod 36
and b mod 24 the solution a2 + b3 = cp that corresponds to the
Frey curve E (d)

(a,b,c) will determine a rational point on the symplectic
or antisymplectic twist X±E (p) where E comes from the finite list
of curves determined before.
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Multiplicative reduction

Theorem 2 (Halberstadt–Kraus 2002, Proposition A.1)
Let E , E ′ be elliptic curves over Q with minimal discriminants ∆,
∆′. Let p be a prime such that ρE ,p ∼ ρE ′,p. Suppose that E
and E ′ have multiplicative reduction at a prime ` 6= p and that
p - v`(∆). Then p - v`(∆′), and the representations ρE ,p and ρE ′,p
are symplectically isomorphic if and only if v`(∆)/v`(∆′) is a
square mod p.
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Multiplicative reduction

Isogeny graph of elliptic curves of conductor 54:

54a2 3−→ 54a1 3−→ 54a3

The Frey curve E (d)
(a,b,c) has multiplicative reduction at ` = 2 if and

only if c is even and d = ±1,±3, in which case its minimal
discriminant is ∆ = 2−633d6cp. In particular, v2(∆) ≡ −6 mod p.
Then the Frey curve must be p-congruent to E = 54a1 (which is
the only curve in our list that has multiplicative reduction at 2).
On the other hand, ∆E = −2339, so that the isomorphism between
E (d)
(a,b,c)[p] and E [p] is symplectic if and only if (−2/p) = 1.

So for p ≡ 1, 11, 17, 19 mod 24, we get rational points
on X54a1(p), whereas for p ≡ 5, 7, 13, 23 mod 24, we get rational
points on X−54a1(p) (which is X54a2(p) when (3/p) = −1).
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Additive reduction

Let E ,E ′ be elliptic curves over Q` with potentially good
reduction. Let L = Qunr

` (E [p]) and L′ = Qunr
` (E ′[p]) be the

smallest extensions of Qunr
` over which they respectively acquire

good reduction.
These extensions do not depend on p 6= ` (Serre–Tate). We will
say that E and E ′ have the same inertia type (at `) if they have
the same conductor and L = L′.

Write I = Gal(L/Qunr
` ) and I` = GQunr

`
. If I is not abelian, then we

can prove that that E [p] and E ′[p] are symplectically isomorphic as
GQ`

-modules if and only if they are symplectically isomorphic as
I`-modules.
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Additive reduction

Theorem 3
Let p ≥ 3 be a prime. Let E and E ′ be elliptic curves over Q2 with
potentially good reduction. Suppose they have the same inertia
type and that I ' H8 (quaternion group). Then E [p] and E ′[p] are
isomorphic as I2-modules. Moreover,
(1) if (2/p) = 1, then E [p] and E ′[p] are symplectically isomorphic

I2-modules;
(2) if (2/p) = −1, then E [p] and E ′[p] are symplectically

isomorphic I2-modules if and only if E [3] and E ′[3] are
symplectically isomorphic I2-modules.
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Additive reduction

Consider the curves E with conductor at 2 equal to 25; these are
96a1, 288a1, 864a1, 864b1 and 864c1.

They all have potentially good reduction at 2 and
I = Gal(L/Qunr

2 ) ' H8. Since H8 is non-abelian the isomorphism of
mod p Galois representations is symplectic if and only if it is
symplectic on the level of inertia groups. It follows that when
(2/p) = 1 the isomorphism E (d)

(a,b,c)[p] ' E [p] can only be
symplectic.

So for p ≡ 1, 7, 17, 23 mod 24, we can exclude the ‘minus’ twists
X−E (p) for E ∈ {96a1, 288a1, 864a1, 864b1, 864c1}.
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Ruling out CM curves

Bilu–Parent–Rebolledo proved that for p ≥ 11, p 6= 13, the image
of the mod p Galois representation of any elliptic curve E over Q is
never contained in the normalizer of a split Cartan subgroup unless
E has complex multiplication. This allows us to deduce the
following.

Corollary 4
Let p = 11 or p ≥ 17 be a prime number.
(1) If p ≡ 1 mod 3, then the only primitive solutions coming from

rational points on X±27a1(p) are the trivial solutions
(±1)2 + 03 = 1p.

(2) If p ≡ 1 mod 4, then the only primitive solutions coming from
rational points on X±288a1(p) are the trivial solutions
02 + (±1)3 = (±1)p (with the same sign on both sides).
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Global points on modular curves, p=7

For p = 7 the modular curve X (7) can be realized as the Klein
quartic

x3y + y3z + z3x = 0.

The equations for twists X±E (7) were found by Kraus and
Halberstadt. This was exploited in the paper by
Poonen-Schaefer-Stoll.

16



Global points on modular curves, p=11
For p = 11 we can realize X (11) as a curve in P4 given a by
Hessian of the cubic threefold

v2w + w2x + x2y + y2z + z2v = 0.

This gives a curve determined by 25 equations (!) of genus 26.
The twists by E were worked out by Tom Fisher.
For p = 11 we have to find points over Q on the twists X+

E (11)
with E ∈ {54a1, 96a1, 864a1, 864b1, 864c1}. A direct approach to
this problem seems to be hopeless...

However we can factor the forgetful map X (11)→ X (1) into
X (11)→ X1(11)→ X0(11)→ X (1). We observe that X1(11) and
X0(11) are 5-isogenous elliptic curves over Q. But we need a twist
of this map for XE (11) and the intermediate map
XE (11)→ X1(11) is defined over degree 60 field and
XE (11)→ X0(11) is realized over degree 12 field (with no
subfields).
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We are able to produce these maps explicitly. For example for
E = 864b1 the twist XE (11) contains a point [0, 1, 0, 0, 0] which
corresponds to the Catalan solution and it generates a point in
Mordell–Weil group of X1(11)(K60) and X0(11)(K12).
The obvious approach would be to use Elliptic Chabauty method
but for this we need a finite index subgroup (for example in
X0(11)(K12)) and we have just a partial information on that.
The other approach might be to combine this explicit maps with
the Chabauty method described during Michael Stoll’s
lecture..(tbc)
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Summary
I Local methods enable us to eliminate many twists of X (p)

which might contribute to putative solutions of x2 + y3 = zp

I Applied methods use the information on Galois action on E [p]
at the level of inertia

I The remaining curves contain `–adic points for ` = 2, 3 so
there is no local obstruction to the existence of global points
on the twists XE (p).

I We have applied an Elliptic Chabauty approach to eliminate
CM cases for p = 11

I We don’t know (yet) how to use the global information about
the maps from XE (11)→ X0(11) to eliminate the remaining
curves for p = 11.

I Provided some explicit models for X (p) with p ≥ 17 we could
try to use some other global methods to eliminate those
curves.

I The unlucky case p = 13 remains the most unfortunate to
deal with...
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Thank you.
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j a b d curves
1 a ≡ 1 mod 4 b ≡ 1 mod 2 1,−3 54a1
2 a ≡ 3 mod 4 b ≡ 1 mod 2 −1, 3 54a1
3 a ≡ 0 mod 4 b ≡ 1 mod 4 ±1,±3 288a1, 864a1, 864b1
4 a ≡ 0 mod 4 b ≡ 3 mod 4 ±2,±6 288a1, 864a1, 864b1
5 a ≡ 2 mod 4 b ≡ 1 mod 4 ±1,±3 96a1, 864c1
6 a ≡ 2 mod 4 b ≡ 3 mod 4 ±2,±6 96a1, 864c1
7 a ≡ 1 mod 4 b ≡ 0 mod 8 −2, 6 27a1
8 a ≡ 3 mod 4 b ≡ 0 mod 8 2,−6 27a1
9 a ≡ 1 mod 2 b ≡ 2 mod 8 ±2,±6 96a1, 864c1
10 a ≡ 1 mod 2 b ≡ 6 mod 8 ±2,±6 288a1, 864a1, 864b1
11 a ≡ 1 mod 2 b ≡ 4 mod 8 ±2,±6 impossible

Table : 2-adic conditions
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i a b d curves
1 a ≡ 1 mod 3 b ≡ −1 mod 3 −3, 6 96a1
2 a ≡ −1 mod 3 b ≡ −1 mod 3 3,−6 96a1
3 a ≡ 0 mod 9 b ≡ ±1 mod 3 d | 6 288a1
4 a ≡ ±3 mod 9 b ≡ 1 mod 3 d | 6 27a1, 864b1, 864c1
5 a ≡ ±3 mod 9 b ≡ −1 mod 3 d | 6 54a1, 864a1
6 a ≡ ±1 mod 3 b ≡ 0 mod 3 d | 6 27a1, 864b1, 864c1
7 a ≡ ±2 mod 9 b ≡ 1 mod 3 d | 6 288a1
8 a ≡ ±1,±4 mod 9 b ≡ 1 mod 3 d | 6 54a1, 864a1

Table : 3-adic conditions
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Remarks
I For p = 13 we don’t have enough information to eliminate

some of the twists only by local considerations.
I For p = 11 we can eliminate all curves that come from twists

by CM curves (so 288a1 and 27a1). This follows from the fact
that the image of Galois representation of curves with CM lies
in the normalizer of non-split Cartan subgroup of GL2(F11).
The corresponding modular curve X+

ns(11) is an elliptic curve
121b1 (Ligozat) and its double cover Xns(11) that classifies
curves with 11–torsion contained in the non–split Cartan
subgroup is of genus 4 with split Jacobian (isogenous to a
product of elliptic curves 121a1,121b1, 121c1 and 121d1).
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Double cover Xns(11)→ X+
ns(11) is realized as

t2 = −(4x3 + 7x2 − 6x + 19)

where X+
ns(11) is

y2 = 4x3 − 4x2 − 28x + 41

and

Xns(11) :

{
y2 = 4x3 − 4x2 − 28x + 41

t2 = −(4x3 + 7x2 − 6x + 19)

We apply Elliptic Chabauty method to twists of Xns(11) by −1,−3
to find all points over Q with rational value at the canonical j–map
Xns(11)→ X (1).
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