
Better triangulations in Normaliz 3.0

Christof Söger

Institute of Mathematics, University of Osnabrück

September, 2015

Christof Söger Better triangulations in Normaliz 3.0

Normaliz

Open source software (GPL)
developed by W. Bruns, B. Ichim, T. Römer, R. Sieg, and C.S.
written in C++ (using Boost and GMP/MPIR)
runs under Linux, MacOs and MS Windows

parallelized with OpenMP
C++ library libnormaliz
interfaces to most common algebra software systems
file based interfaces for Singular, Macaulay 2 and Sage
C++ level interfaces to CoCoA, polymake, Regina and GAP

Applications in: commutative algebra, toric geometry, combina-
torics, integer programming, invariant theory, elimination theory,
mathematical logic, algebraic topology and theoretical physics.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz

Open source software (GPL)
developed by W. Bruns, B. Ichim, T. Römer, R. Sieg, and C.S.
written in C++ (using Boost and GMP/MPIR)
runs under Linux, MacOs and MS Windows
parallelized with OpenMP
C++ library libnormaliz

interfaces to most common algebra software systems
file based interfaces for Singular, Macaulay 2 and Sage
C++ level interfaces to CoCoA, polymake, Regina and GAP

Applications in: commutative algebra, toric geometry, combina-
torics, integer programming, invariant theory, elimination theory,
mathematical logic, algebraic topology and theoretical physics.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz

Open source software (GPL)
developed by W. Bruns, B. Ichim, T. Römer, R. Sieg, and C.S.
written in C++ (using Boost and GMP/MPIR)
runs under Linux, MacOs and MS Windows
parallelized with OpenMP
C++ library libnormaliz
interfaces to most common algebra software systems
file based interfaces for Singular, Macaulay 2 and Sage
C++ level interfaces to CoCoA, polymake, Regina and GAP

Applications in: commutative algebra, toric geometry, combina-
torics, integer programming, invariant theory, elimination theory,
mathematical logic, algebraic topology and theoretical physics.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz

Open source software (GPL)
developed by W. Bruns, B. Ichim, T. Römer, R. Sieg, and C.S.
written in C++ (using Boost and GMP/MPIR)
runs under Linux, MacOs and MS Windows
parallelized with OpenMP
C++ library libnormaliz
interfaces to most common algebra software systems
file based interfaces for Singular, Macaulay 2 and Sage
C++ level interfaces to CoCoA, polymake, Regina and GAP

Applications in: commutative algebra, toric geometry, combina-
torics, integer programming, invariant theory, elimination theory,
mathematical logic, algebraic topology and theoretical physics.

Christof Söger Better triangulations in Normaliz 3.0

The objectives of Normaliz

Normaliz computes

in geometric terms: lattice points of polyhedra,
in algebraic terms: solutions of linear diophantine systems.

The polyhedron and the lattice can be defined

by generators: extreme rays of cones, vertices of polyhedra,
generators of the lattice,
by constraints: inequalities, equations, congruences.

The conversion between generators and constraints is an important
part of Normaliz.

In this talk we restrict ourselves to the homogeneous case: the
polyhedron is a cone, 0 ∈ lattice, constraints are homogeneous.

Offspring NmzIntegrate computes weighted Ehrhart series and
integrals of polynomials over rational polytopes.

Christof Söger Better triangulations in Normaliz 3.0

The objectives of Normaliz

Normaliz computes

in geometric terms: lattice points of polyhedra,
in algebraic terms: solutions of linear diophantine systems.

The polyhedron and the lattice can be defined

by generators: extreme rays of cones, vertices of polyhedra,
generators of the lattice,
by constraints: inequalities, equations, congruences.

The conversion between generators and constraints is an important
part of Normaliz.

In this talk we restrict ourselves to the homogeneous case: the
polyhedron is a cone, 0 ∈ lattice, constraints are homogeneous.

Offspring NmzIntegrate computes weighted Ehrhart series and
integrals of polynomials over rational polytopes.

Christof Söger Better triangulations in Normaliz 3.0

The objectives of Normaliz

Normaliz computes

in geometric terms: lattice points of polyhedra,
in algebraic terms: solutions of linear diophantine systems.

The polyhedron and the lattice can be defined

by generators: extreme rays of cones, vertices of polyhedra,
generators of the lattice,
by constraints: inequalities, equations, congruences.

The conversion between generators and constraints is an important
part of Normaliz.

In this talk we restrict ourselves to the homogeneous case: the
polyhedron is a cone, 0 ∈ lattice, constraints are homogeneous.

Offspring NmzIntegrate computes weighted Ehrhart series and
integrals of polynomials over rational polytopes.

Christof Söger Better triangulations in Normaliz 3.0

The objectives of Normaliz

Normaliz computes

in geometric terms: lattice points of polyhedra,
in algebraic terms: solutions of linear diophantine systems.

The polyhedron and the lattice can be defined

by generators: extreme rays of cones, vertices of polyhedra,
generators of the lattice,
by constraints: inequalities, equations, congruences.

The conversion between generators and constraints is an important
part of Normaliz.

In this talk we restrict ourselves to the homogeneous case: the
polyhedron is a cone, 0 ∈ lattice, constraints are homogeneous.

Offspring NmzIntegrate computes weighted Ehrhart series and
integrals of polynomials over rational polytopes.

Christof Söger Better triangulations in Normaliz 3.0

Rational cones

Definition
A lattice L is a subgroup of Zd . A (rational
polyhedral) cone C is a subset

C = cone(x1, . . . , xn)

= {a1x1 + · · ·+ anxn : a1, . . . , an ∈ R+}

with a generating system x1, . . . , xn ∈ Zd .

Theorem (Gordan’s lemma)

Let C ⊂ Rd be the cone generated by
x1, . . . , xn ∈ Zd . Then C ∩ L is an affine
monoid M, i.e. a finitely generated submonoid
of Zd .

Christof Söger Better triangulations in Normaliz 3.0

Rational cones

Definition
A lattice L is a subgroup of Zd . A (rational
polyhedral) cone C is a subset

C = cone(x1, . . . , xn)

= {a1x1 + · · ·+ anxn : a1, . . . , an ∈ R+}

with a generating system x1, . . . , xn ∈ Zd .

Theorem (Gordan’s lemma)

Let C ⊂ Rd be the cone generated by
x1, . . . , xn ∈ Zd . Then C ∩ L is an affine
monoid M, i.e. a finitely generated submonoid
of Zd .

Christof Söger Better triangulations in Normaliz 3.0

The tasks of Normaliz: Hilbert basis

From now on we assume that C is a pointed cone, i.e.

x ,−x ∈ C =⇒ x = 0.

A lattice point x ∈ M = C ∩ L, x 6= 0 is irreducible if

x = y + z =⇒ y = 0 or z = 0.

Theorem
There are only finitely many irreducible
elements in C ∩ L and they form the unique
minimal system of generators, the Hilbert
basis.

Christof Söger Better triangulations in Normaliz 3.0

The tasks of Normaliz: Hilbert basis

From now on we assume that C is a pointed cone, i.e.

x ,−x ∈ C =⇒ x = 0.

A lattice point x ∈ M = C ∩ L, x 6= 0 is irreducible if

x = y + z =⇒ y = 0 or z = 0.

Theorem
There are only finitely many irreducible
elements in C ∩ L and they form the unique
minimal system of generators, the Hilbert
basis.

Christof Söger Better triangulations in Normaliz 3.0

The tasks of Normaliz: Hilbert series

The second main task is to count the lattice points by degree.

The Hilbert (Ehrhart) function is given by

H(M, k) = #{x ∈ M : deg x = k}

and the Hilbert (Ehrhart) series is

HM(t) =
∞∑

k=0
H(M, k)tk .

Theorem (Hilbert-Serre, Ehrhart)

HM(t) is a rational function.
H(M, k) is a quasi-polynomial for k ≥ 0.

Christof Söger Better triangulations in Normaliz 3.0

The tasks of Normaliz: Hilbert series

The second main task is to count the lattice points by degree.

The Hilbert (Ehrhart) function is given by

H(M, k) = #{x ∈ M : deg x = k}

and the Hilbert (Ehrhart) series is

HM(t) =
∞∑

k=0
H(M, k)tk .

Theorem (Hilbert-Serre, Ehrhart)

HM(t) is a rational function.
H(M, k) is a quasi-polynomial for k ≥ 0.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz Algorithm

In the Normaliz algorithm:
Preparatory coordinate transformation, s.t.
the cone is full dimensional and L = Zd .

Compute a triangulation of the cone, that is
a face-to-face decomposition into simplicial
cones, interleaved with the computation of
the support hyperplanes.
Evaluate the simplicial cones in the
triangulation independently from each other.
Collect the data from the simplicial cones
and process it globally.
Inverse coordinate transformation.

The two points in blue are the main steps that require the most
time.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz Algorithm

In the Normaliz algorithm:
Preparatory coordinate transformation, s.t.
the cone is full dimensional and L = Zd .
Compute a triangulation of the cone, that is
a face-to-face decomposition into simplicial
cones, interleaved with the computation of
the support hyperplanes.

Evaluate the simplicial cones in the
triangulation independently from each other.
Collect the data from the simplicial cones
and process it globally.
Inverse coordinate transformation.

The two points in blue are the main steps that require the most
time.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz Algorithm

In the Normaliz algorithm:
Preparatory coordinate transformation, s.t.
the cone is full dimensional and L = Zd .
Compute a triangulation of the cone, that is
a face-to-face decomposition into simplicial
cones, interleaved with the computation of
the support hyperplanes.
Evaluate the simplicial cones in the
triangulation independently from each other.

Collect the data from the simplicial cones
and process it globally.
Inverse coordinate transformation.

The two points in blue are the main steps that require the most
time.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz Algorithm

In the Normaliz algorithm:
Preparatory coordinate transformation, s.t.
the cone is full dimensional and L = Zd .
Compute a triangulation of the cone, that is
a face-to-face decomposition into simplicial
cones, interleaved with the computation of
the support hyperplanes.
Evaluate the simplicial cones in the
triangulation independently from each other.
Collect the data from the simplicial cones
and process it globally.

Inverse coordinate transformation.
The two points in blue are the main steps that require the most
time.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz Algorithm

In the Normaliz algorithm:
Preparatory coordinate transformation, s.t.
the cone is full dimensional and L = Zd .
Compute a triangulation of the cone, that is
a face-to-face decomposition into simplicial
cones, interleaved with the computation of
the support hyperplanes.
Evaluate the simplicial cones in the
triangulation independently from each other.
Collect the data from the simplicial cones
and process it globally.
Inverse coordinate transformation.

The two points in blue are the main steps that require the most
time.

Christof Söger Better triangulations in Normaliz 3.0

Normaliz Algorithm

In the Normaliz algorithm:
Preparatory coordinate transformation, s.t.
the cone is full dimensional and L = Zd .
Compute a triangulation of the cone, that is
a face-to-face decomposition into simplicial
cones, interleaved with the computation of
the support hyperplanes.
Evaluate the simplicial cones in the
triangulation independently from each other.
Collect the data from the simplicial cones
and process it globally.
Inverse coordinate transformation.

The two points in blue are the main steps that require the most
time.

Christof Söger Better triangulations in Normaliz 3.0

Recent developments

Recent developments, available in Normaliz 3.0:
handling of inhomogeneous systems / polyhedra
Improved input and output

stable integer arithmetic
massive parallelization with Xeon Phi cards
algorithmic improvements for the computation of the fixed
lexicographic triangulation: pyramid decomposition and
partial triangulations
algorithms that allow us to find and use "better" triangulations

Christof Söger Better triangulations in Normaliz 3.0

Recent developments

Recent developments, available in Normaliz 3.0:
handling of inhomogeneous systems / polyhedra
Improved input and output
stable integer arithmetic

massive parallelization with Xeon Phi cards
algorithmic improvements for the computation of the fixed
lexicographic triangulation: pyramid decomposition and
partial triangulations
algorithms that allow us to find and use "better" triangulations

Christof Söger Better triangulations in Normaliz 3.0

Recent developments

Recent developments, available in Normaliz 3.0:
handling of inhomogeneous systems / polyhedra
Improved input and output
stable integer arithmetic
massive parallelization with Xeon Phi cards

algorithmic improvements for the computation of the fixed
lexicographic triangulation: pyramid decomposition and
partial triangulations
algorithms that allow us to find and use "better" triangulations

Christof Söger Better triangulations in Normaliz 3.0

Recent developments

Recent developments, available in Normaliz 3.0:
handling of inhomogeneous systems / polyhedra
Improved input and output
stable integer arithmetic
massive parallelization with Xeon Phi cards
algorithmic improvements for the computation of the fixed
lexicographic triangulation: pyramid decomposition and
partial triangulations

algorithms that allow us to find and use "better" triangulations

Christof Söger Better triangulations in Normaliz 3.0

Recent developments

Recent developments, available in Normaliz 3.0:
handling of inhomogeneous systems / polyhedra
Improved input and output
stable integer arithmetic
massive parallelization with Xeon Phi cards
algorithmic improvements for the computation of the fixed
lexicographic triangulation: pyramid decomposition and
partial triangulations
algorithms that allow us to find and use "better" triangulations

Christof Söger Better triangulations in Normaliz 3.0

Simplicial cones

Let x1, . . . , xd be linearly independent and
S = cone(x1, . . . , xd). Then

E = {q1x1 + · · ·+ qdxd : 0 ≤ qi < 1} ∩ Zd

together with x1, . . . , xd generate the
monoid S ∩ Zd .

Every residue class in Zd/U, U = Zx1 + · · ·+ Zxd , has exactly one
representative in E .
The elements in E are candidates for the Hilbert basis and their
number is given by

|E | = det(x1, . . . , xd).

Therefore the sum of the determinants of the simplices it is a
critical size for the runtime of Normaliz.

Christof Söger Better triangulations in Normaliz 3.0

Simplicial cones

Let x1, . . . , xd be linearly independent and
S = cone(x1, . . . , xd). Then

E = {q1x1 + · · ·+ qdxd : 0 ≤ qi < 1} ∩ Zd

together with x1, . . . , xd generate the
monoid S ∩ Zd .
Every residue class in Zd/U, U = Zx1 + · · ·+ Zxd , has exactly one
representative in E .

The elements in E are candidates for the Hilbert basis and their
number is given by

|E | = det(x1, . . . , xd).

Therefore the sum of the determinants of the simplices it is a
critical size for the runtime of Normaliz.

Christof Söger Better triangulations in Normaliz 3.0

Simplicial cones

Let x1, . . . , xd be linearly independent and
S = cone(x1, . . . , xd). Then

E = {q1x1 + · · ·+ qdxd : 0 ≤ qi < 1} ∩ Zd

together with x1, . . . , xd generate the
monoid S ∩ Zd .
Every residue class in Zd/U, U = Zx1 + · · ·+ Zxd , has exactly one
representative in E .
The elements in E are candidates for the Hilbert basis and their
number is given by

|E | = det(x1, . . . , xd).

Therefore the sum of the determinants of the simplices it is a
critical size for the runtime of Normaliz.

Christof Söger Better triangulations in Normaliz 3.0

Bottom decomposition

The determinant sum of the triangulation computed by Normaliz
depends considerably on the order of the generators of the cone C .
Unless they lie in a hyperplane H, then the determinant is exactly
the normalized (lattice) volume of the polytope spanned by 0 and
C ∩ H.

H

C

This observation helps to find an optimal triangulation in the
general case.

Christof Söger Better triangulations in Normaliz 3.0

Bottom decomposition

We look at the bottom of the polyhedron generated by x1, . . . , xn
as vertices and C as recession cone, and take the volume
underneath the bottom:

C

With the option BottomDecomposition, -b, Normaliz 3.0
computes a triangulation that respects the bottom facets. This
gives the optimal determinant sum for the given generators.

While bottom decomposition is not used automatically for C , it is
used for large simplicial cones in the triangulation if Normaliz can
subdivide them.

Christof Söger Better triangulations in Normaliz 3.0

Ordering of generators

The order of the vectors can play an enormous role.
Normaliz 3.0 orders the input vectors (after coordinate
transformation) as follows:

1 If a triangulation is to be computed, first by degree (if
present) or L1-norm (otherwise).

2 Then lexicographically.

The ordering by degree or L1-norm reduces the size of the
determinants of the simplicial cones. The lexicographic order is
beneficial for the Fourier-Motzkin algorithm, at least for 0-1-input.

The user can block the ordering by setting KeepOrder, -k.

Computation time reductions for the linear ordering polytope for
n = 6: support hyperplanes: 35s → 5s, Hilbert basis: 72s → 7s.

Christof Söger Better triangulations in Normaliz 3.0

Ordering of generators

The order of the vectors can play an enormous role.
Normaliz 3.0 orders the input vectors (after coordinate
transformation) as follows:

1 If a triangulation is to be computed, first by degree (if
present) or L1-norm (otherwise).

2 Then lexicographically.

The ordering by degree or L1-norm reduces the size of the
determinants of the simplicial cones. The lexicographic order is
beneficial for the Fourier-Motzkin algorithm, at least for 0-1-input.

The user can block the ordering by setting KeepOrder, -k.

Computation time reductions for the linear ordering polytope for
n = 6: support hyperplanes: 35s → 5s, Hilbert basis: 72s → 7s.

Christof Söger Better triangulations in Normaliz 3.0

Ordering of generators

The order of the vectors can play an enormous role.
Normaliz 3.0 orders the input vectors (after coordinate
transformation) as follows:

1 If a triangulation is to be computed, first by degree (if
present) or L1-norm (otherwise).

2 Then lexicographically.

The ordering by degree or L1-norm reduces the size of the
determinants of the simplicial cones. The lexicographic order is
beneficial for the Fourier-Motzkin algorithm, at least for 0-1-input.

The user can block the ordering by setting KeepOrder, -k.

Computation time reductions for the linear ordering polytope for
n = 6: support hyperplanes: 35s → 5s, Hilbert basis: 72s → 7s.

Christof Söger Better triangulations in Normaliz 3.0

Approximation of rational polytopes

Often one wants to compute lattice points in rational polytopes. If
the denominators of the vertices are large, a direct application of
the Normaliz primal algorithm can easily fail because the
determinants of the simplicial cones are enormous.

One way out: we approximate the rational polytope P by a larger
integral polytope, compute its lattice points, and select those in in
P. Often this has an overwhelming effect.
In order to use this method “globally” for P, one uses the option
Approximate, -r. It is not used automatically since it could
increase the geometric complexity in an unpredictable way.

Christof Söger Better triangulations in Normaliz 3.0

Approximation of rational polytopes

Often one wants to compute lattice points in rational polytopes. If
the denominators of the vertices are large, a direct application of
the Normaliz primal algorithm can easily fail because the
determinants of the simplicial cones are enormous.

One way out: we approximate the rational polytope P by a larger
integral polytope, compute its lattice points, and select those in in
P. Often this has an overwhelming effect.

In order to use this method “globally” for P, one uses the option
Approximate, -r. It is not used automatically since it could
increase the geometric complexity in an unpredictable way.

Christof Söger Better triangulations in Normaliz 3.0

Approximation of rational polytopes

Often one wants to compute lattice points in rational polytopes. If
the denominators of the vertices are large, a direct application of
the Normaliz primal algorithm can easily fail because the
determinants of the simplicial cones are enormous.

One way out: we approximate the rational polytope P by a larger
integral polytope, compute its lattice points, and select those in in
P. Often this has an overwhelming effect.
In order to use this method “globally” for P, one uses the option
Approximate, -r. It is not used automatically since it could
increase the geometric complexity in an unpredictable way.

Christof Söger Better triangulations in Normaliz 3.0

Decompose simplicial cones

B(S)

For a simplex with big volume, we decompose
it into smaller simplices such that the sum of
their volumes decreases remarkably.
For this purpose we compute points from the
cone and use them for a new triangulation.

Theoretically the best choice for these points are the vertices of
the bottom B(S) of the simplex which is defined as the union of
the bounded faces of the polyhedron conv((S ∩ Zd) \ {0}).

To determine some points from the bottom, we use:

the approximation of the simplex, or
integer programming methods.

Christof Söger Better triangulations in Normaliz 3.0

Decompose simplicial cones

B(S)

For a simplex with big volume, we decompose
it into smaller simplices such that the sum of
their volumes decreases remarkably.
For this purpose we compute points from the
cone and use them for a new triangulation.

Theoretically the best choice for these points are the vertices of
the bottom B(S) of the simplex which is defined as the union of
the bounded faces of the polyhedron conv((S ∩ Zd) \ {0}).

To determine some points from the bottom, we use:

the approximation of the simplex, or
integer programming methods.

Christof Söger Better triangulations in Normaliz 3.0

Decompose simplicial cones

B(S)

For a simplex with big volume, we decompose
it into smaller simplices such that the sum of
their volumes decreases remarkably.
For this purpose we compute points from the
cone and use them for a new triangulation.

Theoretically the best choice for these points are the vertices of
the bottom B(S) of the simplex which is defined as the union of
the bounded faces of the polyhedron conv((S ∩ Zd) \ {0}).

To determine some points from the bottom, we use:

the approximation of the simplex, or
integer programming methods.

Christof Söger Better triangulations in Normaliz 3.0

Decompose simplicial cones

B(S)

For a simplex with big volume, we decompose
it into smaller simplices such that the sum of
their volumes decreases remarkably.
For this purpose we compute points from the
cone and use them for a new triangulation.

Theoretically the best choice for these points are the vertices of
the bottom B(S) of the simplex which is defined as the union of
the bounded faces of the polyhedron conv((S ∩ Zd) \ {0}).

To determine some points from the bottom, we use:

the approximation of the simplex, or
integer programming methods.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

GOAL
compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x , xi+1, . . . , xd) = NT x ,

where N is a normal vector on the hyperplane
spanned by x1, . . . , xd .

S = cone(x1, . . . , xd)

SOLVE THE IP
min{NT x : x ∈ S ∩ Zd , x 6= 0,NT x < NT x1} (?)

If problem can be solved: form a stellar subdivision with the solution.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

GOAL
compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x , xi+1, . . . , xd) = NT x ,

where N is a normal vector on the hyperplane
spanned by x1, . . . , xd .

S = cone(x1, . . . , xd)

SOLVE THE IP
min{NT x : x ∈ S ∩ Zd , x 6= 0,NT x < NT x1} (?)

If problem can be solved: form a stellar subdivision with the solution.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

GOAL
compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x , xi+1, . . . , xd) = NT x ,

where N is a normal vector on the hyperplane
spanned by x1, . . . , xd .

S = cone(x1, . . . , xd)

SOLVE THE IP
min{NT x : x ∈ S ∩ Zd , x 6= 0,NT x < NT x1} (?)

If problem can be solved: form a stellar subdivision with the solution.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

GOAL
compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x , xi+1, . . . , xd) = NT x ,

where N is a normal vector on the hyperplane
spanned by x1, . . . , xd .

S = cone(x1, . . . , xd)

SOLVE THE IP
min{NT x : x ∈ S ∩ Zd , x 6= 0,NT x < NT x1} (?)

If problem can be solved: form a stellar subdivision with the solution.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

GOAL
compute a point x that minimizes the sum of
determinants:

d∑
i=1

det(x1, . . . , xi−1, x , xi+1, . . . , xd) = NT x ,

where N is a normal vector on the hyperplane
spanned by x1, . . . , xd .

S = cone(x1, . . . , xd)

SOLVE THE IP
min{NT x : x ∈ S ∩ Zd , x 6= 0,NT x < NT x1} (?)

If problem can be solved: form a stellar subdivision with the solution.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

use SCIP (3.2.0) via its C++ interface

decompose until determinant reaches 106

the collected subdivision points are then used to compute the
bottom decomposition of the simplicial cone
parallelization with OpenMP

hickerson-16 hickerson-18 knapsack_11_60
simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

old runtime 2s >12d >8d
new runtime 0.5s 46s 5.1s

SUN xFire 4450, 4 Intel Xeon X7460, 20 threads

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

use SCIP (3.2.0) via its C++ interface
decompose until determinant reaches 106

the collected subdivision points are then used to compute the
bottom decomposition of the simplicial cone
parallelization with OpenMP

hickerson-16 hickerson-18 knapsack_11_60
simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

old runtime 2s >12d >8d
new runtime 0.5s 46s 5.1s

SUN xFire 4450, 4 Intel Xeon X7460, 20 threads

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

use SCIP (3.2.0) via its C++ interface
decompose until determinant reaches 106

the collected subdivision points are then used to compute the
bottom decomposition of the simplicial cone

parallelization with OpenMP

hickerson-16 hickerson-18 knapsack_11_60
simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

old runtime 2s >12d >8d
new runtime 0.5s 46s 5.1s

SUN xFire 4450, 4 Intel Xeon X7460, 20 threads

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

use SCIP (3.2.0) via its C++ interface
decompose until determinant reaches 106

the collected subdivision points are then used to compute the
bottom decomposition of the simplicial cone
parallelization with OpenMP

hickerson-16 hickerson-18 knapsack_11_60
simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

old runtime 2s >12d >8d
new runtime 0.5s 46s 5.1s

SUN xFire 4450, 4 Intel Xeon X7460, 20 threads

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

use SCIP (3.2.0) via its C++ interface
decompose until determinant reaches 106

the collected subdivision points are then used to compute the
bottom decomposition of the simplicial cone
parallelization with OpenMP

hickerson-16 hickerson-18 knapsack_11_60
simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

old runtime 2s >12d >8d
new runtime 0.5s 46s 5.1s

SUN xFire 4450, 4 Intel Xeon X7460, 20 threads

Christof Söger Better triangulations in Normaliz 3.0

Decomposition algorithm

use SCIP (3.2.0) via its C++ interface
decompose until determinant reaches 106

the collected subdivision points are then used to compute the
bottom decomposition of the simplicial cone
parallelization with OpenMP

hickerson-16 hickerson-18 knapsack_11_60
simplex volume 9.83× 107 4.17× 1014 2.8× 1014

bottom volume 8.10× 105 3.86× 107 2.02× 107

our volume 3.93× 106 5.47× 107 2.39× 107

old runtime 2s >12d >8d
new runtime 0.5s 46s 5.1s

SUN xFire 4450, 4 Intel Xeon X7460, 20 threads

Christof Söger Better triangulations in Normaliz 3.0

Decomposition via approximation

Instead of solving the IP, we can approximate the simplicial cone to
find possible subdivision elements.
Approximate
simplicial cone

Compute the
approximating
cone

Subdivide
simplicial cone

Using SCIP and the approximation might be used in combination
and the approximation might be redone in a higher level.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition via approximation

Instead of solving the IP, we can approximate the simplicial cone to
find possible subdivision elements.
Approximate
simplicial cone

Compute the
approximating
cone

Subdivide
simplicial cone

Using SCIP and the approximation might be used in combination
and the approximation might be redone in a higher level.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition via approximation

Instead of solving the IP, we can approximate the simplicial cone to
find possible subdivision elements.
Approximate
simplicial cone Compute the

approximating
cone

Subdivide
simplicial cone

Using SCIP and the approximation might be used in combination
and the approximation might be redone in a higher level.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition via approximation

Instead of solving the IP, we can approximate the simplicial cone to
find possible subdivision elements.
Approximate
simplicial cone Compute the

approximating
cone

Subdivide
simplicial cone

Using SCIP and the approximation might be used in combination
and the approximation might be redone in a higher level.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition via approximation

Instead of solving the IP, we can approximate the simplicial cone to
find possible subdivision elements.
Approximate
simplicial cone Compute the

approximating
cone

Subdivide
simplicial cone

Using SCIP and the approximation might be used in combination
and the approximation might be redone in a higher level.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition via approximation

Instead of solving the IP, we can approximate the simplicial cone to
find possible subdivision elements.
Approximate
simplicial cone Compute the

approximating
cone

Subdivide
simplicial cone

Using SCIP and the approximation might be used in combination
and the approximation might be redone in a higher level.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition via approximation

Instead of solving the IP, we can approximate the simplicial cone to
find possible subdivision elements.
Approximate
simplicial cone Compute the

approximating
cone

Subdivide
simplicial cone

Using SCIP and the approximation might be used in combination
and the approximation might be redone in a higher level.

Christof Söger Better triangulations in Normaliz 3.0

Decomposition via approximation

Note: After subdivision the decomposition of the cone may no
longer be a triangulation in the strict sense, but a decomposition
that we call a nested triangulation.

Christof Söger Better triangulations in Normaliz 3.0

	Normaliz
	The objectives of Normaliz
	Rational cones
	The tasks of Normaliz: Hilbert basis
	The tasks of Normaliz: Hilbert series
	Normaliz Algorithm
	Recent developments
	Simplicial cones
	Bottom decomposition
	Ordering of generators
	Approximation of rational polytopes
	Decompose simplicial cones
	Decomposition algorithm
	Decomposition via approximation

