# Gröbner Bases over Algebraic Number Fields

#### Andreas Steenpass

#### joint work with Dereje K. Boku, Wolfram Decker, and Claus Fieker

University of Kaiserslautern

October 1, 2015



# Given an ideal $I \subseteq K[x_1, \ldots, x_n]$ where $K = \mathbb{Q}(\alpha)$ is a number field, what is an efficient way to compute a Gröbner basis of I?

# Overview of the New Method



• Let  $K = \mathbb{Q}(\alpha)$  be an algebraic number field;

- Let  $K = \mathbb{Q}(\alpha)$  be an algebraic number field;
- let  $X = \{x_1, \ldots, x_n\}$  be a set of variables, and let t be an extra variable;

- Let  $K = \mathbb{Q}(\alpha)$  be an algebraic number field;
- let  $X = \{x_1, \ldots, x_n\}$  be a set of variables, and let t be an extra variable;
- let f ∈ Q[t] be the minimal polynomial of the algebraic number α;

- Let  $K = \mathbb{Q}(\alpha)$  be an algebraic number field;
- let  $X = \{x_1, ..., x_n\}$  be a set of variables, and let t be an extra variable;
- let f ∈ Q[t] be the minimal polynomial of the algebraic number α;
- consider the polynomial rings  $S = \mathbb{Q}(\alpha)[X], T = \mathbb{Q}[X, t]$ , and  $\mathbb{Q}[t]$ ;

- Let  $K = \mathbb{Q}(\alpha)$  be an algebraic number field;
- let  $X = \{x_1, \ldots, x_n\}$  be a set of variables, and let t be an extra variable;
- let  $f \in \mathbb{Q}[t]$  be the minimal polynomial of the algebraic number  $\alpha$ ;
- consider the polynomial rings  $S = \mathbb{Q}(\alpha)[X], T = \mathbb{Q}[X, t]$ , and  $\mathbb{Q}[t]$ ;
- fix a global product ordering  $\succ_{\mathcal{K}} := (\succ_1, \succ_2)$  on Mon(X, t); this is an elimination ordering w.r.t. X;

- Let  $K = \mathbb{Q}(\alpha)$  be an algebraic number field;
- let  $X = \{x_1, \ldots, x_n\}$  be a set of variables, and let t be an extra variable;
- let  $f \in \mathbb{Q}[t]$  be the minimal polynomial of the algebraic number  $\alpha$ ;
- consider the polynomial rings  $S = \mathbb{Q}(\alpha)[X], T = \mathbb{Q}[X, t]$ , and  $\mathbb{Q}[t]$ ;
- fix a global product ordering  $\succ_{\mathcal{K}} := (\succ_1, \succ_2)$  on Mon(X, t); this is an elimination ordering w.r.t. X;
- for a polynomial  $q \in S$  and a set  $G \subseteq S$ , we write: Im(q): the *leading monomial* of q, Lm(G): the set of leading monomials of the elements in G.

# The Basic Result

• Let  $I \subseteq S$  be an ideal, given by a set of generators  $H = \{g_1(X, \alpha), \dots, g_s(X, \alpha)\}$ , with polynomials  $g_i(X, t) \in T$ ;

# The Basic Result

- Let  $I \subseteq S$  be an ideal, given by a set of generators  $H = \{g_1(X, \alpha), \dots, g_s(X, \alpha)\}$ , with polynomials  $g_i(X, t) \in T$ ;
- set  $\widetilde{H} = \{g_1(X, t), \dots, g_s(X, t)\} \subset T$ , and let  $\widetilde{I} \subset T$  be the ideal generated by  $\widetilde{H}$  and f.

# The Basic Result

- Let  $I \subseteq S$  be an ideal, given by a set of generators  $H = \{g_1(X, \alpha), \dots, g_s(X, \alpha)\}$ , with polynomials  $g_i(X, t) \in T$ ;
- set  $\widetilde{H} = \{g_1(X, t), \dots, g_s(X, t)\} \subset T$ , and let  $\widetilde{I} \subset T$  be the ideal generated by  $\widetilde{H}$  and f.

#### Theorem

Let  $\widetilde{G}$  be the reduced Gröbner basis of  $\widetilde{I}$  w.r.t.  $\succ_{K}$ . Then, if  $\widetilde{I} \neq \langle 1 \rangle$ , we have  $f \in \widetilde{G}$ . In any case, all elements  $m(X, t) \in \widetilde{G} \setminus \{f\}$  are monic if considered as elements in  $\mathbb{Q}[t][X]$ . Furthermore,  $(\widetilde{G} \setminus \{f\})|_{t=\alpha}$  is the reduced Gröbner basis of I w.r.t.  $\succ_1$ .

• Noro has presented a modified version of Buchberger's algorithm [Masayuki Noro, 2006].

- Noro has presented a modified version of Buchberger's algorithm [Masayuki Noro, 2006].
- He noticed that during the execution of Buchberger's algorithm applied to  $\tilde{I}$ , many superfluous intermediate basis elements of the form  $t^b X^a + (\text{lower terms})$  are computed before a monic element  $X^a + (\text{lower terms})$  is generated.

- Noro has presented a modified version of Buchberger's algorithm [Masayuki Noro, 2006].
- He noticed that during the execution of Buchberger's algorithm applied to  $\tilde{I}$ , many superfluous intermediate basis elements of the form  $t^b X^a + (\text{lower terms})$  are computed before a monic element  $X^a + (\text{lower terms})$  is generated.
  - \* The superfluous elements yield new S-pairs which usually make the subsequent computations inefficient.

- Noro has presented a modified version of Buchberger's algorithm [Masayuki Noro, 2006].
- He noticed that during the execution of Buchberger's algorithm applied to  $\tilde{I}$ , many superfluous intermediate basis elements of the form  $t^b X^a + (\text{lower terms})$  are computed before a monic element  $X^a + (\text{lower terms})$  is generated.
  - \* The superfluous elements yield new S-pairs which usually make the subsequent computations inefficient.
  - \* Noro's modification: Each generated basis element is made monic in  $(\mathbb{Q}[t])[X]$  before it is added to the basis, that is, the inverse of an algebraic number is computed.

- Noro has presented a modified version of Buchberger's algorithm [Masayuki Noro, 2006].
- He noticed that during the execution of Buchberger's algorithm applied to  $\tilde{I}$ , many superfluous intermediate basis elements of the form  $t^b X^a + (\text{lower terms})$  are computed before a monic element  $X^a + (\text{lower terms})$  is generated.
  - \* The superfluous elements yield new S-pairs which usually make the subsequent computations inefficient.
  - \* Noro's modification: Each generated basis element is made monic in  $(\mathbb{Q}[t])[X]$  before it is added to the basis, that is, the inverse of an algebraic number is computed.
  - \* However, this is in general computationally expensive.

• We use a different approach to reduce the number of basis elements which are computed before a monic element  $X^a + (\text{lower terms})$  is generated.

- We use a different approach to reduce the number of basis elements which are computed before a monic element  $X^a + (\text{lower terms})$  is generated.
- Our approach makes use of
  - modular methods w.r.t. different prime numbers to avoid intermediate coefficient swell;

- We use a different approach to reduce the number of basis elements which are computed before a monic element  $X^a + (\text{lower terms})$  is generated.
- Our approach makes use of
  - modular methods w.r.t. different prime numbers to avoid intermediate coefficient swell;
  - factorization of the minimal polynomial in positive characteristic to considerably reduce the degree of the field extensions.

# Two Variants of the Chinese Remainder Theorem

#### Theorem

Let  $p_1, \ldots, p_k$  be distinct prime numbers, and let  $N = p_1 \cdots p_k$ be their product. Then we have the ring isomorphism:

 $\mathbb{Z}/N\mathbb{Z}\cong\mathbb{F}_{p_1}\times\ldots\times\mathbb{F}_{p_k}.$ 

# Two Variants of the Chinese Remainder Theorem

#### Theorem

Let  $p_1, \ldots, p_k$  be distinct prime numbers, and let  $N = p_1 \cdots p_k$  be their product. Then we have the ring isomorphism:

$$\mathbb{Z}/N\mathbb{Z}\cong\mathbb{F}_{p_1}\times\ldots\times\mathbb{F}_{p_k}.$$

#### Theorem

Let  $f_{1,p}, \ldots, f_{r_p,p} \in \mathbb{F}_p[t]$  be pairwise coprime polynomials, and let  $f_p = f_{1,p} \cdots f_{r_p,p}$  be their product. Then we have the ring isomorphism

$$\mathbb{F}_{\rho}[t]/\langle f_{\rho}\rangle \cong \mathbb{F}_{\rho}[t]/\langle f_{1,\rho}\rangle \times \ldots \times \mathbb{F}_{\rho}[t]/\langle f_{r_{\rho},\rho}\rangle.$$

## Level 1: Compute modulo several prime numbers



# Level 1: Compute modulo several prime numbers



# Level 1: Compute modulo several prime numbers



#### Definition

Let  $f \in \mathbb{Q}[t]$  be as given above. Let p be a prime not dividing any numerator or denominator of the coefficients occurring in f. We say that p is *admissible of type* A w.r.t. f if the reduction  $f_p$ is reducible and square-free over  $\mathbb{F}_p$ . In this case, we write  $f_p = \prod_{1 \leq i \leq r_p} f_{i,p}$ .









• Let  $f_p = \prod_{1 \le i \le r_p} f_{i,p}$  be the irreducible factorization of  $f_p$  over  $\mathbb{F}_p$ , with  $r_p > 1$ .



- Let  $f_p = \prod_{1 \le i \le r_p} f_{i,p}$  be the irreducible factorization of  $f_p$  over  $\mathbb{F}_p$ , with  $r_p > 1$ .
- For each  $i \in \{1, \ldots, r_p\}$ , we compute the reduced Gröbner basis  $\widetilde{G}_{i,p}$  of the ideal  $\widetilde{I}_{i,p} := \langle \widetilde{H}_p \cup \{f_{i,p}\} \rangle$ .





#### Definition

Let p be a prime as in the previous definition. In addition, suppose that p does not divide any numerator or denominator of the coefficients occurring in  $\tilde{H}$ . Then we say that p is *admissible* of type B w.r.t. f and  $\tilde{H}$  if for all indices i, j with  $i \neq j$ 



#### Definition

Let p be a prime as in the previous definition. In addition, suppose that p does not divide any numerator or denominator of the coefficients occurring in  $\tilde{H}$ . Then we say that p is *admissible* of type B w.r.t. f and  $\tilde{H}$  if for all indices i, j with  $i \neq j$ the sizes of  $\tilde{G}_{i,p}$  and  $\tilde{G}_{j,p}$  coincide, and



#### Definition

Let p be a prime as in the previous definition. In addition, suppose that p does not divide any numerator or denominator of the coefficients occurring in  $\widetilde{H}$ . Then we say that p is *admissible* of type B w.r.t. f and  $\widetilde{H}$  if for all indices i, j with  $i \neq j$ the sizes of  $\widetilde{G}_{i,p}$  and  $\widetilde{G}_{j,p}$  coincide, and  $(\widetilde{G}_{i,p} \setminus \{f_{i,p}\}) = \operatorname{Lm}(\widetilde{G}_{j,p} \setminus \{f_{j,p}\}).$ 

# Level 3: Reconstruct $\widetilde{G}_p$



# Level 3: Reconstruct $\widetilde{G}_p$



level 3

# Level 3: Reconstruct $\widetilde{G}_{p}$



# Delete Unlucky Primes

#### Definition

Let  $\tilde{I}$  be an ideal given as above and let p be a prime number. Furthermore, let  $\tilde{G}$  be the reduced Gröbner basis of  $\tilde{I}$  and let  $\tilde{G}_p$  be the reduced Gröbner basis of  $\tilde{I}_p$ . Then p is called *lucky* for  $\tilde{I}$  if and only if  $\text{Lm}(\tilde{G}_p) = \text{Lm}(\tilde{G})$ . Otherwise p is called *unlucky* for  $\tilde{I}$ . [Idrees, Pfister, and Steidel, 2011]

# Delete Unlucky Primes

#### Definition

Let  $\tilde{I}$  be an ideal given as above and let p be a prime number. Furthermore, let  $\tilde{G}$  be the reduced Gröbner basis of  $\tilde{I}$  and let  $\tilde{G}_p$  be the reduced Gröbner basis of  $\tilde{I}_p$ . Then p is called *lucky* for  $\tilde{I}$  if and only if  $\text{Lm}(\tilde{G}_p) = \text{Lm}(\tilde{G})$ . Otherwise p is called *unlucky* for  $\tilde{I}$ . [Idrees, Pfister, and Steidel, 2011]



each  $p_i$  is a prime which is admissible of type B

 $\widetilde{G}_{D_{\mu}}$ 

# Delete Unlucky Primes

#### Definition

Let  $\tilde{I}$  be an ideal given as above and let p be a prime number. Furthermore, let  $\tilde{G}$  be the reduced Gröbner basis of  $\tilde{I}$  and let  $\tilde{G}_p$  be the reduced Gröbner basis of  $\tilde{I}_p$ . Then p is called *lucky* for  $\tilde{I}$  if and only if  $\text{Lm}(\tilde{G}_p) = \text{Lm}(\tilde{G})$ . Otherwise p is called *unlucky* for  $\tilde{I}$ . [Idrees, Pfister, and Steidel, 2011]



each  $p_i$  is a prime which is admissible of type B

**DELETEUNLUCKYPRIMES:** If  $\mathcal{P}$  is the set of selected primes, with corresponding Gröbner bases collected in  $\mathcal{GP}$ , define an equivalence relation on  $(\mathcal{GP}, \mathcal{P})$  by

$$(\widetilde{G}_p, p) \sim (\widetilde{G}_q, q) : \iff \operatorname{Lm}(\widetilde{G}_p) = \operatorname{Lm}(\widetilde{G}_q).$$

Store the equivalence class of largest cardinality in  $(\mathcal{GP}, \mathcal{P})$ , and delete the others [Idrees, Pfister, and Steidel, 2011].

### A Test in Positive Characteristic: pTestSB



### A Test in Positive Characteristic: pTestSB



**PTESTSB:** We randomly choose a prime  $p \notin \mathcal{P}$  which is admissible of type B w.r.t. f and  $\widetilde{H}$ . We test if including this prime in the set  $\mathcal{P}$  would improve the result. That is, we explicitly test whether  $\widetilde{I}_p$  reduces to zero w.r.t  $\widetilde{G}$  mapped to  $\mathbb{F}_p[X, t]$ , and vice-versa, whether  $\widetilde{G}$  mapped to  $\mathbb{F}_p[X, t]$  reduces to zero w.r.t.  $\widetilde{G}_p$ . [Idrees, Pfister, and Steidel, 2011]. For homogeneous ideals or for local monomial orderings, we have the following result:

Theorem (Arnold 2003 and Pfister 2007) If  $\tilde{I}$  reduces to zero w.r.t.  $\tilde{G}$  and if  $\tilde{G}$  is the reduced Gröbner basis of  $\langle \tilde{G} \rangle$ , then  $\tilde{I} = \langle \tilde{G} \rangle$ .

# Modular Gröbner Basis Algorithm over $K = \mathbb{Q}(\alpha)$

#### Theorem

Let  $\widetilde{G}$  be the reduced Gröbner basis of  $\widetilde{I}$  with respect to  $\succ_{K}$ . Then  $(\widetilde{G} \setminus \{f\})|_{t=\alpha}$  is the reduced Gröbner basis of I with respect to  $\succ_{1}$ .

# Modular Gröbner Basis Algorithm over $K = \mathbb{Q}(\alpha)$

#### Theorem

Let  $\widetilde{G}$  be the reduced Gröbner basis of  $\widetilde{I}$  with respect to  $\succ_{K}$ . Then  $(\widetilde{G} \setminus \{f\})|_{t=\alpha}$  is the reduced Gröbner basis of I with respect to  $\succ_{1}$ .

#### nfmodStd

- **Input:**  $I = \langle g_1(X, \alpha), \ldots, g_s(X, \alpha) \rangle \subseteq S = K[X].$
- **Output:**  $G \subseteq S$ , a Gröbner basis of I w.r.t.  $\succ_1$ .
  - 1: map I to  $\langle \hat{H} \rangle$  via the map sending  $\alpha$  to t

2: 
$$I \leftarrow \langle H \rangle + \langle f \rangle$$

- 3: compute the reduced Gröbner basis  $\widetilde{G}$  of  $\widetilde{I}$ w.r.t.  $\succ_{\mathcal{K}} = (\succ_1, \succ_2)$
- 4: lift  $\widetilde{G}$  to G via the map sending t to  $\alpha$
- 5: return G

• Our algorithm is implemented in SINGULAR in the library nfmodstd.lib.

http://www.singular.uni-kl.de [Boku, Decker and Fieker, 2015].

|     | Magma   | Singular |          |          |          |          |
|-----|---------|----------|----------|----------|----------|----------|
| deg | GB      | std      | modStd   |          | nfmodStd |          |
|     |         |          | 1 core   | 32 cores | 1 core   | 32 cores |
| 2   | 1241.98 | 1.51     | 1.24     | 0.37     | 0.22     | 0.13     |
| 5   | error   | 70.55    | 19.59    | 4.79     | 1.89     | 0.61     |
| 7   | -       | 0.90     | 143.79   | 9.34     | 3.27     | 0.51     |
| 7   | -       | 314.00   | 11212.00 | 1118.78  | 97.43    | 19.23    |
| 6   | -       | 265.53   | 9163.38  | 567.03   | 686.01   | 99.41    |
| 12  | -       | 2061.95  | 3321.28  | 256.58   | 430.23   | 71.47    |
| 2   | 2.93    | 8931.13  | 197.20   | 47.54    | 24.26    | 8.99     |
| 8   | -       | 0.90     | 2044.08  | 195.41   | 8.54     | 1.87     |
| 7   | -       | 15477.87 | 15274.97 | 4787.49  | 92.99    | 23.89    |

**GB** = GroebnerBasis

• We do not directly use the computationally expensive arithmetic in K.

- We do not directly use the computationally expensive arithmetic in K.
- The computations are carried out over finite fields which avoids coefficient swell.

- We do not directly use the computationally expensive arithmetic in K.
- The computations are carried out over finite fields which avoids coefficient swell.
- Modulo p, we compute in rings with minimal polynomials of degree much less than deg(f).

- We do not directly use the computationally expensive arithmetic in K.
- The computations are carried out over finite fields which avoids coefficient swell.
- Modulo p, we compute in rings with minimal polynomials of degree much less than deg(f).
- The algorithm is parallel in nature.