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Problem

Given an ideal I ⊆ K [x1, . . . , xn] where K = Q(α) is a number
field, what is an efficient way to compute a Gröbner basis of I?
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Overview of the New Method

Ĩ
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Notation

Let K = Q(α) be an algebraic number field;

let X = {x1, . . . , xn} be a set of variables, and let t be an
extra variable;
let f ∈ Q[t] be the minimal polynomial of the algebraic
number α;
consider the polynomial rings S = Q(α)[X ], T = Q[X , t],
and Q[t];
fix a global product ordering �K := (�1,�2) on Mon(X , t);
this is an elimination ordering w.r.t. X ;
for a polynomial q ∈ S and a set G ⊆ S, we write:
lm(q): the leading monomial of q,
Lm(G): the set of leading monomials of the elements in G .
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The Basic Result

Let I ⊆ S be an ideal, given by a set of generators
H = {g1(X , α), . . . , gs(X , α)}, with polynomials
gi(X , t) ∈ T ;

set H̃ = {g1(X , t), . . . , gs(X , t)} ⊂ T , and let Ĩ ⊂ T be the
ideal generated by H̃ and f .

Theorem
Let G̃ be the reduced Gröbner basis of Ĩ w.r.t. �K . Then, if
Ĩ 6= 〈1〉, we have f ∈ G̃. In any case, all elements
m(X , t) ∈ G̃ \ {f } are monic if considered as elements in
Q[t][X ]. Furthermore, (G̃ \ {f })|t=α is the reduced Gröbner
basis of I w.r.t. �1.
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Previous Work

Noro has presented a modified version of Buchberger’s
algorithm [Masayuki Noro, 2006].

He noticed that during the execution of Buchberger’s
algorithm applied to Ĩ, many superfluous intermediate basis
elements of the form tbX a + (lower terms) are computed
before a monic element X a + (lower terms) is generated.
∗ The superfluous elements yield new S-pairs which usually

make the subsequent computations inefficient.
∗ Noro’s modification: Each generated basis element is made

monic in (Q[t])[X ] before it is added to the basis, that is,
the inverse of an algebraic number is computed.

∗ However, this is in general computationally expensive.
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Our New Approach

◦ We use a different approach to reduce the number of basis
elements which are computed before a monic element
X a + (lower terms) is generated.

◦ Our approach makes use of
modular methods w.r.t. different prime numbers to avoid
intermediate coefficient swell;
factorization of the minimal polynomial in positive
characteristic to considerably reduce the degree of the field
extensions.
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Two Variants of the Chinese Remainder Theorem

Theorem
Let p1, . . . , pk be distinct prime numbers, and let N = p1 · · · pk
be their product. Then we have the ring isomorphism:

Z/NZ ∼= Fp1 × . . .× Fpk .

Theorem

Let f1,p, . . . , frp ,p ∈ Fp[t] be pairwise coprime polynomials, and
let fp = f1,p · · · frp ,p be their product. Then we have the ring
isomorphism

Fp[t]/〈fp〉 ∼= Fp[t]/〈f1,p〉 × . . .× Fp[t]/〈frp ,p〉.
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Level 1: Compute modulo several prime numbers

Ĩ f ∈ Ĩ Input

level 1
. . .Ĩp1 Ĩpk

Definition

Let f ∈ Q[t] be as given above. Let p be a prime not dividing
any numerator or denominator of the coefficients occurring in f .
We say that p is admissible of type A w.r.t. f if the reduction fp
is reducible and square-free over Fp. In this case, we write
fp =

∏
1≤i≤rp fi ,p.
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Level 2: Compute modulo the factors of fp

Ĩ f ∈ Ĩ Input

level 1level 1Ĩp

level 2G̃1,p · · · G̃rp ,p
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Level 2: Compute modulo the factors of fp

Ĩp level 1

G̃1,p · · · G̃rp ,p level 2

Let fp =
∏

1≤i≤rp fi ,p be the irreducible factorization of fp
over Fp, with rp > 1.
For each i ∈ {1, . . . , rp}, we compute the reduced Gröbner
basis G̃i ,p of the ideal Ĩi ,p := 〈H̃p ∪ {fi ,p}〉.

11/20



Level 2: Compute modulo the factors of fp
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Level 2: Compute modulo the factors of fp

G̃1,p · · · G̃rp ,p level 2

Definition

Let p be a prime as in the previous definition. In addition,
suppose that p does not divide any numerator or denominator of
the coefficients occurring in H̃. Then we say that p is admissible
of type B w.r.t. f and H̃ if for all indices i , j with i 6= j

1 the sizes of G̃i ,p and G̃j,p coincide, and
2 Lm(G̃i ,p \ {fi ,p}) = Lm(G̃j,p \ {fj,p}).
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Level 3: Reconstruct G̃p

Ĩp level 1

G̃1,p · · · G̃rp ,p level 2

level 3G̃p

CRA for polynomials
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Delete Unlucky Primes
Definition
Let Ĩ be an ideal given as above and let p be a prime number.
Furthermore, let G̃ be the reduced Gröbner basis of Ĩ and let G̃p
be the reduced Gröbner basis of Ĩp. Then p is called lucky for Ĩ
if and only if Lm(G̃p) = Lm(G̃). Otherwise p is called unlucky
for Ĩ. [Idrees, Pfister, and Steidel, 2011]

G̃p1
· · · G̃pk

each pi is a prime which is admissible of type B

DeleteUnluckyPrimes: If P is the set of selected primes,
with corresponding Gröbner bases collected in GP, define an
equivalence relation on (GP,P) by

(G̃p, p) ∼ (G̃q, q) :⇐⇒ Lm(G̃p) = Lm(G̃q).
Store the equivalence class of largest cardinality in (GP,P), and
delete the others [Idrees, Pfister, and Steidel, 2011].
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A Test in Positive Characteristic: pTestSB

G̃p1
· · · G̃pk

G̃ ⊆ T

CRA for integers and rational reconstruction

pTestSB: We randomly choose a prime p /∈ P which is
admissible of type B w.r.t. f and H̃. We test if including this
prime in the set P would improve the result. That is, we
explicitly test whether Ĩp reduces to zero w.r.t G̃ mapped to
Fp[X , t], and vice-versa, whether G̃ mapped to Fp[X , t] reduces
to zero w.r.t. G̃p. [Idrees, Pfister, and Steidel, 2011].
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Final Test

For homogeneous ideals or for local monomial orderings, we
have the following result:

Theorem (Arnold 2003 and Pfister 2007)

If Ĩ reduces to zero w.r.t. G̃ and if G̃ is the reduced Gröbner
basis of 〈G̃〉, then Ĩ = 〈G̃〉.
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Modular Gröbner Basis Algorithm over K = Q(α)

Theorem
Let G̃ be the reduced Gröbner basis of Ĩ with respect to �K .
Then (G̃ \ {f })|t=α is the reduced Gröbner basis of I with respect
to �1.

nfmodStd
Input: I = 〈g1(X , α), . . . , gs(X , α)〉 ⊆ S = K [X ].
Output: G ⊆ S, a Gröbner basis of I w.r.t. �1.

1: map I to 〈H̃〉 via the map sending α to t
2: Ĩ ←− 〈H̃〉+ 〈f 〉
3: compute the reduced Gröbner basis G̃ of Ĩ

w.r.t. �K = (�1,�2)
4: lift G̃ to G via the map sending t to α
5: return G
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w.r.t. �K = (�1,�2)
4: lift G̃ to G via the map sending t to α
5: return G

17/20



Implementation and Timings

Our algorithm is implemented in Singular in the library
nfmodstd.lib.
http://www.singular.uni-kl.de
[Boku, Decker and Fieker, 2015].
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Implementation and Timings

Magma Singular

deg GB std
modStd nfmodStd

1 core 32 cores 1 core 32 cores
2 1241.98 1.51 1.24 0.37 0.22 0.13
5 error 70.55 19.59 4.79 1.89 0.61
7 - 0.90 143.79 9.34 3.27 0.51
7 - 314.00 11212.00 1118.78 97.43 19.23
6 - 265.53 9163.38 567.03 686.01 99.41
12 - 2061.95 3321.28 256.58 430.23 71.47
2 2.93 8931.13 197.20 47.54 24.26 8.99
8 - 0.90 2044.08 195.41 8.54 1.87
7 - 15477.87 15274.97 4787.49 92.99 23.89

GB = GroebnerBasis
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Advantages of the New Method

Why is the new algorithm much faster than other
known methods?

We do not directly use the computationally expensive
arithmetic in K .
The computations are carried out over finite fields which
avoids coefficient swell.
Modulo p, we compute in rings with minimal polynomials
of degree much less than deg(f ).
The algorithm is parallel in nature.
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