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Given an ideal | C K[xi, ..., xy] where K = Q(«) is a number
field, what is an efficient way to compute a Grébner basis of /7
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Overview of the New Method
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Modular Reconstruction (over Q)
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e Let K = Q(«) be an algebraic number field,;

o let X = {x1,...,x,} be a set of variables, and let t be an
extra variable;

e let f € Q[t] be the minimal polynomial of the algebraic
number «;

e consider the polynomial rings S = Q(a)[X], T = Q[X, t],
and Q[t];

e fix a global product ordering > x:= (1, >2) on Mon(X, t);
this is an elimination ordering w.r.t. X;

o for a polynomial g € S and a set G C S, we write:

Im(q): the leading monomial of q,
Lm(G): the set of leading monomials of the elements in G.
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The Basic Result

o Let I C S be an ideal, given by a set of generators
H={ga1(X,a),...,g(X,a)}, with polynomials
gi(X,t) e T;
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The Basic Result

o Let I C S be an ideal, given by a set of generators
H={ga1(X,a),...,g(X,a)}, with polynomials
gi(X,t) e T;

e set H = {gi(X, t),...,8s(X,t)} C T, and let 1C T be the
ideal generated by H and f.

Theorem

Let G be the reduced Grobner basis of Twrt =k. Then, if
I # (1), we have f € G. In any case, all elements
m(X,t) € G\ {f} are monic if considered as elements in

Q[t][X]. Furthermore, (G \ {f})|t=a is the reduced Grébner
basis of I w.r.t. 1.
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Previous Work

@ Noro has presented a modified version of Buchberger’s
algorithm [Masayuki Noro, 2006].
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Previous Work

@ Noro has presented a modified version of Buchberger’s
algorithm [Masayuki Noro, 2006].

@ He noticed that during the execution of Buchberger’s
algorithm applied to 7, many superfluous intermediate basis
elements of the form t?X? + (lower terms) are computed
before a monic element X? + (lower terms) is generated.

x The superfluous elements yield new S-pairs which usually
make the subsequent computations inefficient.

+ Noro’s modification: Each generated basis element is made
monic in (Q[¢t])[X] before it is added to the basis, that is,
the inverse of an algebraic number is computed.

+ However, this is in general computationally expensive.
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Our New Approach

o We use a different approach to reduce the number of basis
elements which are computed before a monic element
X? 4+ (lower terms) is generated.
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Our New Approach

o We use a different approach to reduce the number of basis
elements which are computed before a monic element
X? 4+ (lower terms) is generated.
o Our approach makes use of
e modular methods w.r.t. different prime numbers to avoid
intermediate coefficient swell;
o factorization of the minimal polynomial in positive
characteristic to considerably reduce the degree of the field
extensions.
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Two Variants of the Chinese Remainder Theorem

Let p1,...,px be distinct prime numbers, and let N = p; - - - px
be their product. Then we have the ring isomorphism:

Z/NZ 2 Fp % ... x Fp,.
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Two Variants of the Chinese Remainder Theorem

Theorem

Let p1,...,px be distinct prime numbers, and let N = p; - - - px
be their product. Then we have the ring isomorphism:

Z/NZ=Fp % ... x Fp,.

Theorem

| A

Let fip, ..., fr, p € Fp[t] be pairwise coprime polynomials, and
let fp = f1p- - fr, p be their product. Then we have the ring
isomorphism

Fplt]/(fo) = Fplt]/{fp) ¥ ... X Fplt]/ (£, p)-
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Level 1: Compute modulo several prime numbers
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Level 1: Compute modulo several prime numbers

I f c I Input
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Let f € Q[t] be as given above. Let p be a prime not dividing
any numerator or denominator of the coefficients occurring in f.

We say that p is admissible of type A w.r.t. f if the reduction f,
is reducible and square-free over F,. In this case, we write

fp = ngigrp fip-
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Level 2: Compute modulo the factors of f,
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Compute modulo the factors of f,
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o Let fp = Ili<i<,, fip e the irreducible factorization of f,
over [Fp, with r, > 1.
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Level 2: Compute modulo the factors of f,

level 1

Gi,p o Ci%7p

level 2

o Let fp = Ili<i<,, fip e the irreducible factorization of f,
over [Fp, with r, > 1.

e For each i € {1,...,r,}, we compute the reduced Grébner
basis Gjp of the ideal I; p := (Hp, U {fi p}).
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Level 2: Compute modulo the factors of f,

level 2
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Level 2: Compute modulo the factors of f,

G1,p U (;$7P level 2

Definition

Let p be a prime as in the previous definition. In addition,
suppose that p does not divide any numerator or denominator of
the coefficients occurring in H. Then we say that p is admissible
of type B w.r.t. f and H if for all indices i,j with i # j
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Level 2: Compute modulo the factors of f,

G1,p U (;$7P level 2

Definition

Let p be a prime as in the previous definition. In addition,
suppose that p does not divide any numerator or denominator of
the coefficients occurring in H. Then we say that p is admissible
of type B w.r.t. f and H if for all indices i,j with i # j

@ the sizes of Z;,-’p and Z;J-,p coincide, and

@ Lm(Gip \ {fip}) = Lm(Gjp \ {f}).
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Level 3:

Reconstruct G,
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Reconstruct G,
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Level 3: Reconstruct Ep
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Delete Unlucky Primes

Definition

Let / be an ideal given as above and let p be a prime number.
Furthermore, let G be the reduced Grébner basis of / and let G,
be the reduced Grobner basis of /,. Then p is called lucky for /

if and only if Lm(Gp) = Lm(G). Otherwise p is called unlucky
for /. [Idrees, Pfister, and Steidel, 2011]
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Delete Unlucky Primes

Definition

Let / be an ideal given as above and let p be a prime number.
Furthermore, let G be the reduced Grébner basis of / and let G,
be the reduced Grobner basis of /,. Then p is called lucky for /

if and only if Lm(Gp) = Lm(G). Otherwise p is called unlucky
for /. [Idrees, Pfister, and Steidel, 2011]

GP1 e GPk

each p; is a prime which is admissible of type B

DELETEUNLUCKYPRIMES: If P is the set of selected primes,
with corresponding Grébner bases collected in GP, define an
equivalence relation on (GP,P) by

(Gp, p) ~ (Gg, q) = Lm(G,) = Lm(Gy).
Store the equivalence class of largest cardinality in (GP,P), and
delete the others [Idrees, Pfister, and Steidel, 2011].
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A Test in Positive Characteristic: pTestSB
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A Test in Positive Characteristic: pTestSB

PTESTSB: We randomly choose a prime p ¢ P which is
admissible of type B w.r.t. f and H. We test if including this
prime in the set P would improve the result. That is, we
explicitly test whether 7,, reduces to zero w.r.t G mapped to
Fp[X, t], and vice-versa, whether G mapped to Fp[X, t] reduces
to zero w.r.t. Ep. [Idrees, Pfister, and Steidel, 2011].
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For homogeneous ideals or for local monomial orderings, we
have the following result:

Theorem (Arnold 2003 and Pfister 2007)

Ifl reduces to zero w.r.t. G and if G is the reduced Grobner
basis of (G), then I = (G).
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Modular Grobner Basis Algorithm over K = Q(«)

Theorem

Let G be the reduced Grébner basis of 1 with respect to k.

Then (G \ {f})|t=q is the reduced Grébner basis of | with respect
to >1.
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Modular Grobner Basis Algorithm over K = Q(«)

Theorem

Let G be the reduced Grébner basis of 1 with respect to k.
Then (G \ {f})|t=a is the reduced Grébner basis of | with respect
to >1.

nfmodStd
Input: /= (g1(X,a),...,g8:(X,a)) C S = K[X].
Output: G C S, a Grobner basis of | w.r.t. >1.
1: map / to <H> via the map sending « to t
2: | +— <f4> + <f>
3: compute the reduced Grobner basis Gofl
w.r.t. == (>—1, >—2)
4: lift G to G via the map sending t to «
5: return G
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Implementation and Timings

e Our algorithm is implemented in SINGULAR in the library
nfmodstd.lib.
http://www.singular.uni-kl.de
[Boku, Decker and Fieker, 2015].
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http://www.singular.uni-kl.de

Implementation and Timings

Magma Singular
modStd nfmodStd
deg GB std 1 core \ 32 cores | 1 core \ 32 cores
2 | 1241.98 1.51 1.24 0.37 0.22 0.13
5 error 70.55 19.59 4.79 1.89 0.61
7 - 0.90 143.79 9.34 3.27 0.51
7 - 314.00 | 11212.00 | 1118.78 | 97.43 19.23
6 - 265.53 | 9163.38 | 567.03 | 686.01 99.41
12 -1 2061.95| 3321.28 | 256.58 | 430.23 71.47
2 2.93 | 8931.13 197.20 47.54 | 24.26 8.99
8 - 0.90| 2044.08 | 195.41 8.54 1.87
7 - | 15477.87 | 15274.97 | 4787.49 | 92.99 23.89
GB = GroebnerBasis
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Advantages of the New Method

Why is the new algorithm much faster than other
known methods?
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Advantages of the New Method

Why is the new algorithm much faster than other
known methods?

@ We do not directly use the computationally expensive
arithmetic in K.

@ The computations are carried out over finite fields which
avoids coefficient swell.

@ Modulo p, we compute in rings with minimal polynomials
of degree much less than deg(f).

@ The algorithm is parallel in nature.
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