
Chabauty

without the Mordell-Weil group

Michael Stoll
Universität Bayreuth

Jahrestagung SPP 1489

Osnabrück

September 29, 2015



Example

Say, we would like to solve the Generalized Fermat Equation

x5 + y5 = z17 .

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

Cp : 5y
2 = 4xp + 1

are the obvious ones (namely, ∞ and (1,±1)),

then the only primitive integral solutions of x5 + y5 = zp

are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19

and deal with p = 11 and p = 13 in another way, assuming GRH.)



Example

Say, we would like to solve the Generalized Fermat Equation

x5 + y5 = z17 .

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

Cp : 5y
2 = 4xp + 1

are the obvious ones (namely, ∞ and (1,±1)),

then the only primitive integral solutions of x5 + y5 = zp

are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19

and deal with p = 11 and p = 13 in another way, assuming GRH.)



Example

Say, we would like to solve the Generalized Fermat Equation

x5 + y5 = z17 .

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

Cp : 5y
2 = 4xp + 1

are the obvious ones (namely, ∞ and (1,±1)),

then the only primitive integral solutions of x5 + y5 = zp

are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19

and deal with p = 11 and p = 13 in another way, assuming GRH.)



Example

Say, we would like to solve the Generalized Fermat Equation

x5 + y5 = z17 .

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

Cp : 5y
2 = 4xp + 1

are the obvious ones (namely, ∞ and (1,±1)),

then the only primitive integral solutions of x5 + y5 = zp

are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19

and deal with p = 11 and p = 13 in another way, assuming GRH.)



Why the Usual Approach Does Not Work

So we would like to show that C17(Q) = {∞, (1,±1)}.
The usual approach is to embed C17 into its Jacobian variety J17,

to determine the group J17(Q) (up to finite index),

and then to apply Chabauty’s method

(which uses p-adic analysis to isolate C17(Q) inside J17(Q)).

The first step is to compute the 2-Selmer group Sel2 J17
∼= (Z/2Z)2.

Since J17(Q)[2] = 0, this gives rank J17(Q) ≤ 2.
We know the point [(1, 1) −∞] of infinite order, so rank J17(Q) ≥ 1,
and (assuming finiteness of Sha) therefore rank J17(Q) = 2.

But we are unable to find another independent point,

so we cannot proceed with Chabauty’s method.



Why the Usual Approach Does Not Work

So we would like to show that C17(Q) = {∞, (1,±1)}.
The usual approach is to embed C17 into its Jacobian variety J17,

to determine the group J17(Q) (up to finite index),

and then to apply Chabauty’s method

(which uses p-adic analysis to isolate C17(Q) inside J17(Q)).

The first step is to compute the 2-Selmer group Sel2 J17
∼= (Z/2Z)2.

Since J17(Q)[2] = 0, this gives rank J17(Q) ≤ 2.
We know the point [(1, 1) −∞] of infinite order, so rank J17(Q) ≥ 1,
and (assuming finiteness of Sha) therefore rank J17(Q) = 2.

But we are unable to find another independent point,

so we cannot proceed with Chabauty’s method.



Why the Usual Approach Does Not Work

So we would like to show that C17(Q) = {∞, (1,±1)}.
The usual approach is to embed C17 into its Jacobian variety J17,

to determine the group J17(Q) (up to finite index),

and then to apply Chabauty’s method

(which uses p-adic analysis to isolate C17(Q) inside J17(Q)).

The first step is to compute the 2-Selmer group Sel2 J17
∼= (Z/2Z)2.

Since J17(Q)[2] = 0, this gives rank J17(Q) ≤ 2.
We know the point [(1, 1) −∞] of infinite order, so rank J17(Q) ≥ 1,
and (assuming finiteness of Sha) therefore rank J17(Q) = 2.

But we are unable to find another independent point,

so we cannot proceed with Chabauty’s method.



Why the Usual Approach Does Not Work

So we would like to show that C17(Q) = {∞, (1,±1)}.
The usual approach is to embed C17 into its Jacobian variety J17,

to determine the group J17(Q) (up to finite index),

and then to apply Chabauty’s method

(which uses p-adic analysis to isolate C17(Q) inside J17(Q)).

The first step is to compute the 2-Selmer group Sel2 J17
∼= (Z/2Z)2.

Since J17(Q)[2] = 0, this gives rank J17(Q) ≤ 2.
We know the point [(1, 1) −∞] of infinite order, so rank J17(Q) ≥ 1,
and (assuming finiteness of Sha) therefore rank J17(Q) = 2.

But we are unable to find another independent point,

so we cannot proceed with Chabauty’s method.



Why the Usual Approach Does Not Work

So we would like to show that C17(Q) = {∞, (1,±1)}.
The usual approach is to embed C17 into its Jacobian variety J17,

to determine the group J17(Q) (up to finite index),

and then to apply Chabauty’s method

(which uses p-adic analysis to isolate C17(Q) inside J17(Q)).

The first step is to compute the 2-Selmer group Sel2 J17
∼= (Z/2Z)2.

Since J17(Q)[2] = 0, this gives rank J17(Q) ≤ 2.
We know the point [(1, 1) −∞] of infinite order, so rank J17(Q) ≥ 1,
and (assuming finiteness of Sha) therefore rank J17(Q) = 2.

But we are unable to find another independent point,

so we cannot proceed with Chabauty’s method.



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty (plus Mordell-Weil Sieve) to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp J, where J = Jac(C).

Global Part: Class groups and units of number fields

• Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Q`)/pJ(Q`) for bad primes `;

worst case is ` = p.

• Can get painful even for p = 2 and moderate g.

2. Find P1, . . . , Pr ∈ J(Q) such that 〈P1, . . . , Pr〉 + J(Q)tors −→→ Selp J.

Problems: rank bound not tight, large generators,

high-dimensional search space.

• The most serious stumbling block in many cases.

3. If r < g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).

• If we get here, we usually win!



The Idea

In joint work with Bjorn Poonen

we used only the 2-Selmer group and its statistical behavior

(as determined by Bhargava and Gross)

to show that Chabauty’s method at p = 2 applies

to ‘most’ hyperelliptic curves C of odd degree to show C(Q) = {∞}.

The idea is to make this work for concrete curves C

to show that C(Q) does not contain unknown points.

Pro: No need to find many independent points in J(Q).

Con: Does not always work, even when Selmer rank < g.

Pro: Necessary conditions are likely satisfied when g is not very small.



The Idea

In joint work with Bjorn Poonen

we used only the 2-Selmer group and its statistical behavior

(as determined by Bhargava and Gross)

to show that Chabauty’s method at p = 2 applies

to ‘most’ hyperelliptic curves C of odd degree to show C(Q) = {∞}.

The idea is to make this work for concrete curves C

to show that C(Q) does not contain unknown points.

Pro: No need to find many independent points in J(Q).

Con: Does not always work, even when Selmer rank < g.

Pro: Necessary conditions are likely satisfied when g is not very small.



The Idea

In joint work with Bjorn Poonen

we used only the 2-Selmer group and its statistical behavior

(as determined by Bhargava and Gross)

to show that Chabauty’s method at p = 2 applies

to ‘most’ hyperelliptic curves C of odd degree to show C(Q) = {∞}.

The idea is to make this work for concrete curves C

to show that C(Q) does not contain unknown points.

Pro: No need to find many independent points in J(Q).

Con: Does not always work, even when Selmer rank < g.

Pro: Necessary conditions are likely satisfied when g is not very small.



The Idea

In joint work with Bjorn Poonen

we used only the 2-Selmer group and its statistical behavior

(as determined by Bhargava and Gross)

to show that Chabauty’s method at p = 2 applies

to ‘most’ hyperelliptic curves C of odd degree to show C(Q) = {∞}.

The idea is to make this work for concrete curves C

to show that C(Q) does not contain unknown points.

Pro: No need to find many independent points in J(Q).

Con: Does not always work, even when Selmer rank < g.

Pro: Necessary conditions are likely satisfied when g is not very small.



The Idea

In joint work with Bjorn Poonen

we used only the 2-Selmer group and its statistical behavior

(as determined by Bhargava and Gross)

to show that Chabauty’s method at p = 2 applies

to ‘most’ hyperelliptic curves C of odd degree to show C(Q) = {∞}.

The idea is to make this work for concrete curves C

to show that C(Q) does not contain unknown points.

Pro: No need to find many independent points in J(Q).

Con: Does not always work, even when Selmer rank < g.

Pro: Necessary conditions are likely satisfied when g is not very small.



The Idea

In joint work with Bjorn Poonen

we used only the 2-Selmer group and its statistical behavior

(as determined by Bhargava and Gross)

to show that Chabauty’s method at p = 2 applies

to ‘most’ hyperelliptic curves C of odd degree to show C(Q) = {∞}.

The idea is to make this work for concrete curves C

to show that C(Q) does not contain unknown points.

Pro: No need to find many independent points in J(Q).

Con: Does not always work, even when Selmer rank < g.

Pro: Necessary conditions are likely satisfied when g is not very small.



Method

Setting:

C/Q nice curve with Jacobian J;

P0 ∈ C(Q), gives embedding i : C ↪→ J;

Γ ⊂ J(Q) a subgroup with saturation Γ̄ ;

p a prime number; X ⊂ C(Qp), e.g., a residue disk.

For P ∈ J(Qp) set

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
⊂
J(Qp)
pJ(Qp)

where πp : J(Qp)→ J(Qp)/pJ(Qp),

and for S ⊂ J(Qp) set q(S) =
⋃
P∈S

q(P).



Method

Setting:

C/Q nice curve with Jacobian J;

P0 ∈ C(Q), gives embedding i : C ↪→ J;

Γ ⊂ J(Q) a subgroup with saturation Γ̄ ;

p a prime number; X ⊂ C(Qp), e.g., a residue disk.

For P ∈ J(Qp) set

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
⊂
J(Qp)
pJ(Qp)

where πp : J(Qp)→ J(Qp)/pJ(Qp),

and for S ⊂ J(Qp) set q(S) =
⋃
P∈S

q(P).



Method

Setting:

C/Q nice curve with Jacobian J;

P0 ∈ C(Q), gives embedding i : C ↪→ J;

Γ ⊂ J(Q) a subgroup with saturation Γ̄ ;

p a prime number; X ⊂ C(Qp), e.g., a residue disk.

For P ∈ J(Qp) set

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
⊂
J(Qp)
pJ(Qp)

where πp : J(Qp)→ J(Qp)/pJ(Qp),

and for S ⊂ J(Qp) set q(S) =
⋃
P∈S

q(P).



Method

Γ ⊂ J(Q) subgroup with saturation Γ̄

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
C(Q) ∩ X � � //

� _

��

C(Q) �
� i //

� _

��

J(Q) π // //

� _

��

J(Q)
pJ(Q)

� � δ //

��

Selp J
σ
xx

X � � // C(Qp) � � i // J(Qp)
πp

// //
J(Qp)
pJ(Qp)

Proposition.

If (1) ker σ ⊂ δπ(Γ) and (2) q(i(X) + Γ) ∩ imσ ⊂ πp(Γ), then C(Q) ∩ X ⊂ i−1(Γ̄).

Corollary.

If P0 ∈ X, X is contained in (half) a residue disk,

ker σ ⊂ δπ(J(Q)[p∞]) and q(i(X) + J(Q)[p∞]) ∩ im σ ⊂ πp(J(Q)[p∞]), then

C(Q) ∩ X = {P0} .



Method

Γ ⊂ J(Q) subgroup with saturation Γ̄

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
C(Q) ∩ X � � //

� _

��

C(Q) �
� i //

� _

��

J(Q) π // //

� _

��

J(Q)
pJ(Q)

� � δ //

��

Selp J
σ
xx

X � � // C(Qp) � � i // J(Qp)
πp

// //
J(Qp)
pJ(Qp)

Proposition.

If (1) ker σ ⊂ δπ(Γ) and (2) q(i(X) + Γ) ∩ imσ ⊂ πp(Γ), then C(Q) ∩ X ⊂ i−1(Γ̄).

Corollary.

If P0 ∈ X, X is contained in (half) a residue disk,

ker σ ⊂ δπ(J(Q)[p∞]) and q(i(X) + J(Q)[p∞]) ∩ im σ ⊂ πp(J(Q)[p∞]), then

C(Q) ∩ X = {P0} .



Method

Γ ⊂ J(Q) subgroup with saturation Γ̄

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
C(Q) ∩ X � � //

� _

��

C(Q) �
� i //

� _

��

J(Q) π // //

� _

��

J(Q)
pJ(Q)

� � δ //

��

Selp J
σ
xx

X � � // C(Qp) � � i // J(Qp)
πp

// //
J(Qp)
pJ(Qp)

Proposition.

If (1) ker σ ⊂ δπ(Γ) and (2) q(i(X) + Γ) ∩ imσ ⊂ πp(Γ), then C(Q) ∩ X ⊂ i−1(Γ̄).

Corollary.

If P0 ∈ X, X is contained in (half) a residue disk,

ker σ ⊂ δπ(J(Q)[p∞]) and q(i(X) + J(Q)[p∞]) ∩ im σ ⊂ πp(J(Q)[p∞]), then

C(Q) ∩ X = {P0} .



Method

Γ ⊂ J(Q) subgroup with saturation Γ̄

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
C(Q) ∩ X � � //

� _

��

C(Q) �
� i //

� _

��

J(Q) π // //

� _

��

J(Q)
pJ(Q)

� � δ //

��

Selp J
σ
xx

X � � // C(Qp) � � i // J(Qp)
πp

// //
J(Qp)
pJ(Qp)

Proposition.

If (1) ker σ ⊂ δπ(Γ) and (2) q(i(X) + Γ) ∩ imσ ⊂ πp(Γ), then C(Q) ∩ X ⊂ i−1(Γ̄).

Corollary.

If P0 ∈ X, X is contained in (half) a residue disk,

ker σ ⊂ δπ(J(Q)[p∞]) and q(i(X) + J(Q)[p∞]) ∩ im σ ⊂ πp(J(Q)[p∞]), then

C(Q) ∩ X = {P0} .



Method

Γ ⊂ J(Q) subgroup with saturation Γ̄

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
C(Q) ∩ X � � //

� _

��

C(Q) �
� i //

� _

��

J(Q) π // //

� _

��

J(Q)
pJ(Q)

� � δ //

��

Selp J
σ
xx

X � � // C(Qp) � � i // J(Qp)
πp

// //
J(Qp)
pJ(Qp)

Proposition.

If (1) ker σ ⊂ δπ(Γ) and (2) q(i(X) + Γ) ∩ imσ ⊂ πp(Γ), then C(Q) ∩ X ⊂ i−1(Γ̄).

Corollary.

If P0 ∈ X, X is contained in (half) a residue disk,

ker σ ⊂ δπ(J(Q)[p∞]) and q(i(X) + J(Q)[p∞]) ∩ im σ ⊂ πp(J(Q)[p∞]), then

C(Q) ∩ X = {P0} .



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm

when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly.

• If C is given as y2 = f(x) and L = Q[x]/〈f〉, then have compatible maps

µ : J(Q)→ J(Q)

2J(Q)
↪→ L�, µ2 : J(Q2)→ J(Q2)

2J(Q2)
↪→ L�2 , r : L� → L�2 ,

where L2 = L⊗Q Q2 and R� = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L�.

• So work with L� and L�2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm

when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly.

• If C is given as y2 = f(x) and L = Q[x]/〈f〉, then have compatible maps

µ : J(Q)→ J(Q)

2J(Q)
↪→ L�, µ2 : J(Q2)→ J(Q2)

2J(Q2)
↪→ L�2 , r : L� → L�2 ,

where L2 = L⊗Q Q2 and R� = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L�.

• So work with L� and L�2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm

when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly.

• If C is given as y2 = f(x) and L = Q[x]/〈f〉, then have compatible maps

µ : J(Q)→ J(Q)

2J(Q)
↪→ L�, µ2 : J(Q2)→ J(Q2)

2J(Q2)
↪→ L�2 , r : L� → L�2 ,

where L2 = L⊗Q Q2 and R� = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L�.

• So work with L� and L�2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm

when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly.

• If C is given as y2 = f(x) and L = Q[x]/〈f〉, then have compatible maps

µ : J(Q)→ J(Q)

2J(Q)
↪→ L�, µ2 : J(Q2)→ J(Q2)

2J(Q2)
↪→ L�2 , r : L� → L�2 ,

where L2 = L⊗Q Q2 and R� = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L�.

• So work with L� and L�2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm

when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly.

• If C is given as y2 = f(x) and L = Q[x]/〈f〉, then have compatible maps

µ : J(Q)→ J(Q)

2J(Q)
↪→ L�, µ2 : J(Q2)→ J(Q2)

2J(Q2)
↪→ L�2 , r : L� → L�2 ,

where L2 = L⊗Q Q2 and R� = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L�.

• So work with L� and L�2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm

when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly.

• If C is given as y2 = f(x) and L = Q[x]/〈f〉, then have compatible maps

µ : J(Q)→ J(Q)

2J(Q)
↪→ L�, µ2 : J(Q2)→ J(Q2)

2J(Q2)
↪→ L�2 , r : L� → L�2 ,

where L2 = L⊗Q Q2 and R� = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L�.

• So work with L� and L�2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).



Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm

when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly.

• If C is given as y2 = f(x) and L = Q[x]/〈f〉, then have compatible maps

µ : J(Q)→ J(Q)

2J(Q)
↪→ L�, µ2 : J(Q2)→ J(Q2)

2J(Q2)
↪→ L�2 , r : L� → L�2 ,

where L2 = L⊗Q Q2 and R� = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L�.

• So work with L� and L�2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.



Applications

(1) 5y2 = 4xp + 1:

Obtain a three-element set Z ⊂ Q2(
p
√
2)� that r(Sel2 Jp) has to avoid;

also check that r|Sel2 Jp is injective. This gives

Theorem.

x5+ y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) The set of integral points on Y2 − Y = X21 − X is {−1, 0, 1}× {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on

y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x + 69

are the two points at infinity.

(Note: g = rank J(Q) = 4.)

(5) More to come!



Applications

(1) 5y2 = 4xp + 1:

Obtain a three-element set Z ⊂ Q2(
p
√
2)� that r(Sel2 Jp) has to avoid;

also check that r|Sel2 Jp is injective. This gives

Theorem.

x5+ y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) The set of integral points on Y2 − Y = X21 − X is {−1, 0, 1}× {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on

y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x + 69

are the two points at infinity.

(Note: g = rank J(Q) = 4.)

(5) More to come!



Applications

(1) 5y2 = 4xp + 1:

Obtain a three-element set Z ⊂ Q2(
p
√
2)� that r(Sel2 Jp) has to avoid;

also check that r|Sel2 Jp is injective. This gives

Theorem.

x5+ y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) The set of integral points on Y2 − Y = X21 − X is {−1, 0, 1}× {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on

y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x + 69

are the two points at infinity.

(Note: g = rank J(Q) = 4.)

(5) More to come!



Applications

(1) 5y2 = 4xp + 1:

Obtain a three-element set Z ⊂ Q2(
p
√
2)� that r(Sel2 Jp) has to avoid;

also check that r|Sel2 Jp is injective. This gives

Theorem.

x5+ y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) The set of integral points on Y2 − Y = X21 − X is {−1, 0, 1}× {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on

y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x + 69

are the two points at infinity.

(Note: g = rank J(Q) = 4.)

(5) More to come!



Applications

(1) 5y2 = 4xp + 1:

Obtain a three-element set Z ⊂ Q2(
p
√
2)� that r(Sel2 Jp) has to avoid;

also check that r|Sel2 Jp is injective. This gives

Theorem.

x5+ y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) The set of integral points on Y2 − Y = X21 − X is {−1, 0, 1}× {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on

y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x + 69

are the two points at infinity.

(Note: g = rank J(Q) = 4.)

(5) More to come!



Applications

(1) 5y2 = 4xp + 1:

Obtain a three-element set Z ⊂ Q2(
p
√
2)� that r(Sel2 Jp) has to avoid;

also check that r|Sel2 Jp is injective. This gives

Theorem.

x5+ y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) The set of integral points on Y2 − Y = X21 − X is {−1, 0, 1}× {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on

y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x + 69

are the two points at infinity.

(Note: g = rank J(Q) = 4.)

(5) More to come!



Applications

(1) 5y2 = 4xp + 1:

Obtain a three-element set Z ⊂ Q2(
p
√
2)� that r(Sel2 Jp) has to avoid;

also check that r|Sel2 Jp is injective. This gives

Theorem.

x5+ y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) The set of integral points on Y2 − Y = X21 − X is {−1, 0, 1}× {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on

y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x + 69

are the two points at infinity.

(Note: g = rank J(Q) = 4.)

(5) More to come!



Thank You!


