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Example

Say, we would like to solve the Generalized Fermat Equation
X +y5 =z,

Proposition (Dahmen & Siksek 2014).
Let p be an odd prime. If the only rational points on the curve

Cp: 5y% = 4xP + 1

are the obvious ones (namely, co and (1,+£1)),
then the only primitive integral solutions of x> +y® = zP
are the trivial ones.

(Dahmen and Siksek show this for p =7 and p =19
and deal with p =11 and p =13 in another way, assuming GRH.)
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Why the Usual Approach Does Not Work

So we would like to show that  Cy7(Q) = {oo, (1,£1)}.

T he usual approach is to embed Cy7 into its Jacobian variety J;7,
to determine the group J;7(Q) (up to finite index),

and then to apply Chabauty’'s method

(which uses p-adic analysis to isolate Cy7(Q) inside J17(Q)).

The first step is to compute the 2-Selmer group  Sel, |17 = (Z/27)?.
Since J17(Q)[2] =0, this gives rank J;7(Q) < 2.

We know the point [(1,1) — co] of infinite order, so  rank J;7(Q) > 1,
and (assuming finiteness of Sha) therefore rank J;7(Q) = 2.

But we are unable to find another independent point,
SO we cannot proceed with Chabauty’'s method.
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he Usual Approach and its Problems

Let C be a nice curve of genus g over Q.

1. Compute a Selmer group Selp ], where J = Jac(C).

Global Part: Class groups and units of number fields

e Usually OK for p =2, C hyperelliptic, moderate g (GRH).

Local Part: Computation of J(Qp)/pJ(Qp) for bad primes ¢;
worst case is { = p.

e Can get painful even for p =2 and moderate g.

2. Find Py,...,Pr € J(Q) such that (Py,...,Pr) + J(Q)tors — Selp J.
Problems: rank bound not tight, large generators,
high-dimensional search space.
e T he most serious stumbling block in many cases.

3. If r< g, use Chabauty plus Mordell-Weil Sieve to determine C(Q).
e If we get here, we usually win!
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he Idea

In joint work with Bjorn Poonen

we used only the 2-Selmer group and its statistical behavior

(as determined by Bhargava and Gross)

to show that Chabauty’s method at p = 2 applies

to ‘most’ hyperelliptic curves C of odd degree to show C(Q) = {oo}.

The idea is to make this work for concrete curves C
to show that C(Q) does not contain unknown points.

Pro: No need to find many independent points in J(Q).
Con: Does not always work, even when Selmer rank < g.
Pro: Necessary conditions are likely satisfied when g is not very small.
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Method

Setting:

C/Q nice curve with Jacobian J;

Py € C(Q), gives embedding i: C < J;

' C J(Q) a subgroup with saturation T;

p a prime number; X C C(Qp), e.9., a residue disk.

For P ¢ J(Qp) set

J(Qp)

q(P) = {mp(Q): Q € J(Qp),In > 0: p"Q =P} C D1(@y)
where 7p: ](@p) — I(@p)/P](Qp),

and for S C J(Qp) set q(S) = | q(P).
PeS
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Method

I C J(Q) subgroup with saturation T
q(P) = {mp(Q): Q € J(Qp),In > 0: p"Q = P}

CQNX—— C(Q) —— J(@) —=- J& . 5 ge|

{ { { T[ PJ (f@) /

X C(Qp) —— J(Qp) 2 i)

Proposition.
If (1) kero C on(I") and (2) q(i(X) +T)Nimo C mp(I'), then C(Q) N X C i—1(T).

Corollary.
If Py € X, X is contained in (half) a residue disk,

ker o C 5n(J(Q)[p™]) and q(i(X) + J(Q)p™)) Nim o C 1 (J(Q)[p™]), then
C(Q) NX = {Py}.
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Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm
when p =2 and C is a hyperelliptic curve of odd degree.

e ¢ is locally constant in an explicit way.

e To compute q, need to halve points in J(Q,).
This can be done explicitly.

e If C is given as y2 = f(x) and L = Q[x]/(f), then have compatible maps

w: J(Q) — % — LY, up: J(Qg) — ZI](%Z)) — L% r: LY — Lg'

where L, = L®g Q, and RY = RX/(RX)2.

e Can compute Sel, C and Sel, ] as a subset and subgroup of L.

e So work with - and L5 instead of J(Q)/2](Q) and J(Q2)/2J(Q,).
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. Compute Sel, C C Sel, ] C L~.
If ker(r)nSelh | & w(J(Q)[2%°]), then return FAIL.
. Search for rational points on C; this gives C(Q)known-

Let X be a partition of C(Q,) into (half) residue disks X.
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he Algorithm

. Compute Sel, C C Sel, ] C L~.

If ker(r)nSelh | & w(J(Q)[2%°]), then return FAIL.

. Search for rational points on C; this gives C(Q)known-
Let X be a partition of C(Q,) into (half) residue disks X.
. Set R = wy(J(Q)12%]) C L5

For each X € X, do:

if 1H(X)Nr(Sel, C) # 0 then return FAIL, else continue with next X.

b. Pick Py € XN C(Q)known and compute Y = },Lz(q(ipo(X) + J(Q)[2°°]))
c. If YNnr(Sel,]) Z R then return FAIL.

_Ch(J‘I_-bool\Jl—l

Remark. Can leave out 2-adic condition for Sel,]J.
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Applications

(1) 5y =4xP + 1:
Obtain a three-element set Z ¢ Q,(¥/2)” that r(Sel, Jp) has to avoid;
also check that rlgey, T IS injective. This gives

Theorem.
X% 4+1y° = zP has only trivial solutions for p < 53 (under GRH for p > 23).

(2) Similar application to FLT (via y? =4xP + 1).
(3) The set of integral points on Y2 —Y = X2 — X is {—1,0, 1} x {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on
y? = 81x10 4+ 420x” + 1380x% + 1860x” + 3060x° — 66x° + 3240x* — 1740x3 4 1320x? — 480x + 69
are the two points at infinity.

(Note: g=rank J(Q) =4.)

(5) More to come!
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