Chabauty
 without the Mordell-Weil group

Michael Stoll
Universität Bayreuth
Jahrestagung SPP 1489
Osnabrück
September 29, 2015

Example

Example

Say, we would like to solve the Generalized Fermat Equation

$$
x^{5}+y^{5}=z^{17}
$$

Example

Say, we would like to solve the Generalized Fermat Equation

$$
x^{5}+y^{5}=z^{17} .
$$

Proposition (Dahmen \& Siksek 2014).
Let p be an odd prime. If the only rational points on the curve

$$
C_{p}: 5 y^{2}=4 x^{p}+1
$$

are the obvious ones (namely, ∞ and $(1, \pm 1)$), then the only primitive integral solutions of $x^{5}+y^{5}=z^{p}$ are the trivial ones.

Example

Say, we would like to solve the Generalized Fermat Equation

$$
x^{5}+y^{5}=z^{17}
$$

Proposition (Dahmen \& Siksek 2014).
Let p be an odd prime. If the only rational points on the curve

$$
C_{p}: 5 y^{2}=4 x^{p}+1
$$

are the obvious ones (namely, ∞ and $(1, \pm 1)$), then the only primitive integral solutions of $x^{5}+y^{5}=z^{p}$ are the trivial ones.
(Dahmen and Siksek show this for $p=7$ and $p=19$
and deal with $p=11$ and $p=13$ in another way, assuming GRH.)

Why the Usual Approach Does Not Work

Why the Usual Approach Does Not Work

So we would like to show that

$$
C_{17}(\mathbb{Q})=\{\infty,(1, \pm 1)\} .
$$

Why the Usual Approach Does Not Work

So we would like to show that

$$
C_{17}(\mathbb{Q})=\{\infty,(1, \pm 1)\} .
$$

The usual approach is to embed C_{17} into its Jacobian variety J_{17}, to determine the group $\mathrm{J}_{17}(\mathbb{Q})$ (up to finite index), and then to apply Chabauty's method (which uses p-adic analysis to isolate $\mathrm{C}_{17}(\mathbb{Q})$ inside $\mathrm{J}_{17}(\mathbb{Q})$).

Why the Usual Approach Does Not Work

So we would like to show that

$$
C_{17}(\mathbb{Q})=\{\infty,(1, \pm 1)\} .
$$

The usual approach is to embed C_{17} into its Jacobian variety J_{17}, to determine the group $\mathrm{J}_{17}(\mathbb{Q})$ (up to finite index), and then to apply Chabauty's method (which uses p-adic analysis to isolate $\mathrm{C}_{17}(\mathbb{Q})$ inside $\mathrm{J}_{17}(\mathbb{Q})$).

The first step is to compute the 2 -Selmer group $\operatorname{Sel}_{2} \mathrm{~J}_{17} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Since $\mathrm{J}_{17}(\mathbb{Q})[2]=0$, this gives rank $\mathrm{J}_{17}(\mathbb{Q}) \leq 2$.
We know the point $[(1,1)-\infty]$ of infinite order, so rank $\mathrm{J}_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of Sha) therefore $\operatorname{rank} \mathrm{J}_{17}(\mathbb{Q})=2$.

Why the Usual Approach Does Not Work

So we would like to show that

$$
C_{17}(\mathbb{Q})=\{\infty,(1, \pm 1)\} .
$$

The usual approach is to embed C_{17} into its Jacobian variety J_{17}, to determine the group $\mathrm{J}_{17}(\mathbb{Q})$ (up to finite index), and then to apply Chabauty's method (which uses p-adic analysis to isolate $\mathrm{C}_{17}(\mathbb{Q})$ inside $\mathrm{J}_{17}(\mathbb{Q})$).

The first step is to compute the 2 -Selmer group $\operatorname{Sel}_{2} \mathrm{~J}_{17} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$. Since $\mathrm{J}_{17}(\mathbb{Q})[2]=0$, this gives rank $\mathrm{J}_{17}(\mathbb{Q}) \leq 2$.
We know the point $[(1,1)-\infty]$ of infinite order, so rank $\mathrm{J}_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of Sha) therefore $\operatorname{rank} \mathrm{J}_{17}(\mathbb{Q})=2$.

But we are unable to find another independent point, so we cannot proceed with Chabauty's method.

The Usual Approach and its Problems

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

- Usually OK for $p=2$, C hyperelliptic, moderate g (GRH).

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

- Usually OK for $p=2$, C hyperelliptic, moderate g (GRH).

Local Part: Computation of $J\left(\mathbb{Q}_{\ell}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\ell}\right)$ for bad primes ℓ; worst case is $\ell=p$.

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

- Usually OK for $p=2$, C hyperelliptic, moderate g (GRH).

Local Part: Computation of $J\left(\mathbb{Q}_{\ell}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\ell}\right)$ for bad primes ℓ; worst case is $\ell=p$.

- Can get painful even for $p=2$ and moderate g.

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

- Usually OK for $p=2, \mathrm{C}$ hyperelliptic, moderate g (GRH).

Local Part: Computation of $J\left(\mathbb{Q}_{\ell}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\ell}\right)$ for bad primes ℓ; worst case is $\ell=p$.

- Can get painful even for $p=2$ and moderate g.

2. Find $P_{1}, \ldots, \operatorname{Pr} \in J(\mathbb{Q})$ such that $\left\langle\mathrm{P}_{1}, \ldots, \operatorname{Pr}\right\rangle+J(\mathbb{Q})_{\text {tors }} \longrightarrow$ Sel $_{p} J$.

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

- Usually OK for $p=2$, C hyperelliptic, moderate $g(G R H)$.

Local Part: Computation of $J\left(\mathbb{Q}_{\ell}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\ell}\right)$ for bad primes ℓ; worst case is $\ell=p$.

- Can get painful even for $p=2$ and moderate g.

2. Find $P_{1}, \ldots, \operatorname{Pr} \in J(\mathbb{Q})$ such that $\left\langle\mathrm{P}_{1}, \ldots, \operatorname{Pr}\right\rangle+\mathrm{J}(\mathbb{Q})_{\text {tors }} \longrightarrow$ Sel $_{p} J$.

Problems: rank bound not tight, large generators, high-dimensional search space.

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

- Usually OK for $p=2$, C hyperelliptic, moderate $g(G R H)$.

Local Part: Computation of $J\left(\mathbb{Q}_{\ell}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\ell}\right)$ for bad primes ℓ; worst case is $\ell=p$.

- Can get painful even for $p=2$ and moderate g.

2. Find $P_{1}, \ldots, \operatorname{Pr} \in J(\mathbb{Q})$ such that $\left\langle\mathrm{P}_{1}, \ldots, \operatorname{Pr}\right\rangle+\mathrm{J}(\mathbb{Q})_{\text {tors }} \longrightarrow$ Sel $_{p} \mathrm{~J}$.

Problems: rank bound not tight, large generators, high-dimensional search space.

- The most serious stumbling block in many cases.

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

- Usually OK for $p=2$, C hyperelliptic, moderate $g(G R H)$.

Local Part: Computation of $J\left(\mathbb{Q}_{\ell}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\ell}\right)$ for bad primes ℓ; worst case is $\ell=p$.

- Can get painful even for $p=2$ and moderate g.

2. Find $P_{1}, \ldots, \operatorname{Pr} \in J(\mathbb{Q})$ such that $\left\langle\mathrm{P}_{1}, \ldots, \operatorname{Pr}\right\rangle+\mathrm{J}(\mathbb{Q})_{\text {tors }} \longrightarrow$ Sel $_{p} \mathrm{~J}$.

Problems: rank bound not tight, large generators, high-dimensional search space.

- The most serious stumbling block in many cases.

3. If $r<g$, use Chabauty plus Mordell-Weil Sieve to determine $C(\mathbb{Q})$.

The Usual Approach and its Problems

Let C be a nice curve of genus g over \mathbb{Q}.

1. Compute a Selmer group Sel $_{p} \mathrm{~J}$, where $\mathrm{J}=\mathrm{Jac}(\mathrm{C})$.

Global Part: Class groups and units of number fields

- Usually OK for $p=2$, C hyperelliptic, moderate $g(G R H)$.

Local Part: Computation of $J\left(\mathbb{Q}_{\ell}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\ell}\right)$ for bad primes ℓ; worst case is $\ell=p$.

- Can get painful even for $p=2$ and moderate g.

2. Find $P_{1}, \ldots, \operatorname{Pr} \in J(\mathbb{Q})$ such that $\left\langle\mathrm{P}_{1}, \ldots, \operatorname{Pr}\right\rangle+\mathrm{J}(\mathbb{Q})_{\text {tors }} \longrightarrow$ Sel $_{p} J$.

Problems: rank bound not tight, large generators, high-dimensional search space.

- The most serious stumbling block in many cases.

3. If $r<g$, use Chabauty plus Mordell-Weil Sieve to determine $C(\mathbb{Q})$.

- If we get here, we usually win!

The Idea

The Idea

In joint work with Bjorn Poonen
we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross)
to show that Chabauty's method at $p=2$ applies
to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q})=\{\infty\}$.

The Idea

In joint work with Bjorn Poonen
we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross)
to show that Chabauty's method at $p=2$ applies
to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q})=\{\infty\}$.

The idea is to make this work for concrete curves C to show that $\mathrm{C}(\mathbb{Q})$ does not contain unknown points.

The Idea

In joint work with Bjorn Poonen
we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross)
to show that Chabauty's method at $p=2$ applies
to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q})=\{\infty\}$.

The idea is to make this work for concrete curves C to show that $\mathrm{C}(\mathbb{Q})$ does not contain unknown points.

Pro: No need to find many independent points in $J(\mathbb{Q})$.

The Idea

In joint work with Bjorn Poonen
we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross)
to show that Chabauty's method at $p=2$ applies
to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q})=\{\infty\}$.

The idea is to make this work for concrete curves C to show that $\mathrm{C}(\mathbb{Q})$ does not contain unknown points.

Pro: No need to find many independent points in $J(\mathbb{Q})$.
Con: Does not always work, even when Selmer rank $<\mathrm{g}$.

The Idea

In joint work with Bjorn Poonen
we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross)
to show that Chabauty's method at $p=2$ applies
to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q})=\{\infty\}$.

The idea is to make this work for concrete curves C to show that $\mathrm{C}(\mathbb{Q})$ does not contain unknown points.

Pro: No need to find many independent points in $J(\mathbb{Q})$.
Con: Does not always work, even when Selmer rank $<\mathrm{g}$.
Pro: Necessary conditions are likely satisfied when g is not very small.

Method

Method

Setting:

C / \mathbb{Q} nice curve with Jacobian J;
$P_{0} \in C(\mathbb{Q})$, gives embedding $i: C \hookrightarrow J$;
$\Gamma \subset J(\mathbb{Q})$ a subgroup with saturation $\bar{\Gamma}$;
p a prime number; $X \subset C(\mathbb{Q} p)$, e.g., a residue disk.

Method

Setting:

C / \mathbb{Q} nice curve with Jacobian J;
$P_{0} \in C(\mathbb{Q})$, gives embedding $i: C \hookrightarrow J$;
$\Gamma \subset J(\mathbb{Q})$ a subgroup with saturation $\bar{\Gamma}$;
p a prime number; $X \subset C\left(\mathbb{Q}_{p}\right)$, e.g., a residue disk.
For $P \in J\left(\mathbb{Q}_{p}\right)$ set

$$
q(P)=\left\{\pi_{p}(Q): Q \in J\left(\mathbb{Q}_{p}\right), \exists \mathfrak{n} \geq 0: p^{n} Q=P\right\} \subset \frac{J\left(\mathbb{Q}_{p}\right)}{p J\left(\mathbb{Q}_{p}\right)}
$$

where $\pi_{\mathrm{p}}: \mathrm{J}\left(\mathbb{Q}_{\mathrm{p}}\right) \rightarrow \mathrm{J}\left(\mathbb{Q}_{\mathrm{p}}\right) / \mathrm{pJ}\left(\mathbb{Q}_{\mathrm{p}}\right)$,
and for $S \subset J\left(\mathbb{Q}_{p}\right)$ set $q(S)=\bigcup_{P \in S} q(P)$.

Method

Method

$$
\begin{aligned}
& \Gamma \subset J(\mathbb{Q}) \text { subgroup with saturation } \bar{\Gamma} \\
& q(P)=\left\{\pi_{p}(Q): Q \in J(\mathbb{Q} p), \exists \mathfrak{n} \geq 0: p^{\mathfrak{n}} Q=P\right\}
\end{aligned}
$$

Method

$$
\begin{aligned}
& \Gamma \subset J(\mathbb{Q}) \text { subgroup with saturation } \bar{\Gamma} \\
& q(P)=\left\{\pi_{p}(Q): Q \in J(\mathbb{Q} p), \exists \mathfrak{n} \geq 0: p^{n} Q=P\right\}
\end{aligned}
$$

Method

$\Gamma \subset J(\mathbb{Q})$ subgroup with saturation $\bar{\Gamma}$
$\mathrm{q}(\mathrm{P})=\left\{\pi_{\mathrm{p}}(\mathrm{Q}): Q \in \mathrm{~J}\left(\mathbb{Q}_{\mathrm{p}}\right), \exists \mathfrak{n} \geq 0: \mathrm{p}^{\mathrm{n}} \mathrm{Q}=\mathrm{P}\right\}$

Proposition.

If (1) $\operatorname{ker} \sigma \subset \delta \pi(\Gamma)$ and (2) $q(i(X)+\Gamma) \cap \operatorname{im\sigma } \subset \pi_{p}(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset \mathfrak{i}^{-1}(\bar{\Gamma})$.

Method

$\Gamma \subset J(\mathbb{Q})$ subgroup with saturation $\bar{\Gamma}$
$q(P)=\left\{\pi_{p}(Q): Q \in J(\mathbb{Q} p), \exists \mathfrak{n} \geq 0: p^{n} Q=P\right\}$

Proposition.

If (1) $\operatorname{ker} \sigma \subset \delta \pi(\Gamma)$ and (2) $q(i(X)+\Gamma) \cap \operatorname{im\sigma } \subset \pi_{p}(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset \mathfrak{i}^{-1}(\bar{\Gamma})$.

Corollary.

If $P_{0} \in X, X$ is contained in (half) a residue disk, ker $\sigma \subset \delta \pi\left(J(\mathbb{Q})\left[p^{\infty}\right]\right)$ and $q\left(i(X)+J(\mathbb{Q})\left[p^{\infty}\right]\right) \cap \operatorname{im} \sigma \subset \pi_{p}\left(J(\mathbb{Q})\left[p^{\infty}\right]\right)$, then $C(\mathbb{Q}) \cap X=\left\{P_{0}\right\}$.

Odd Degree Hyperelliptic Curves

Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm
when $p=2$ and C is a hyperelliptic curve of odd degree.

Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm when $p=2$ and C is a hyperelliptic curve of odd degree.

- \mathbf{q} is locally constant in an explicit way.

Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm when $p=2$ and C is a hyperelliptic curve of odd degree.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J\left(\mathbb{Q}_{2}\right)$.

This can be done explicitly.

Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm when $p=2$ and C is a hyperelliptic curve of odd degree.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J\left(\mathbb{Q}_{2}\right)$.

This can be done explicitly.

- If C is given as $y^{2}=f(x)$ and $L=\mathbb{Q}[x] /\langle f\rangle$, then have compatible maps
$\mu: \mathrm{J}(\mathbb{Q}) \rightarrow \frac{\mathrm{J}(\mathbb{Q})}{2 \mathrm{~J}(\mathbb{Q})} \hookrightarrow \mathrm{L}^{\square}, \quad \mu_{2}: \mathrm{J}\left(\mathbb{Q}_{2}\right) \rightarrow \frac{\mathrm{J}\left(\mathbb{Q}_{2}\right)}{2 \mathrm{~J}\left(\mathbb{Q}_{2}\right)} \hookrightarrow \mathrm{L}_{2}^{\square}, \quad \mathrm{r}: \mathrm{L}^{\square} \rightarrow \mathrm{L}_{2}^{\square}$, where $L_{2}=L \otimes_{\mathbb{Q}} \mathbb{Q}_{2}$ and $R^{\square}=R^{\times} /\left(R^{\times}\right)^{2}$.

Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm when $p=2$ and C is a hyperelliptic curve of odd degree.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J\left(\mathbb{Q}_{2}\right)$.

This can be done explicitly.

- If C is given as $y^{2}=f(x)$ and $L=\mathbb{Q}[x] /\langle f\rangle$, then have compatible maps
$\mu: J(\mathbb{Q}) \rightarrow \frac{J(\mathbb{Q})}{2 J(\mathbb{Q})} \hookrightarrow L^{\square}, \quad \mu_{2}: J\left(\mathbb{Q}_{2}\right) \rightarrow \frac{J\left(\mathbb{Q}_{2}\right)}{2 J\left(\mathbb{Q}_{2}\right)} \hookrightarrow L_{2}^{\square}, \quad r: L^{\square} \rightarrow L_{2}^{\square}$, where $L_{2}=L \otimes_{\mathbb{Q}} \mathbb{Q}_{2}$ and $R^{\square}=R^{\times} /\left(R^{\times}\right)^{2}$.
- Can compute $\mathrm{Sel}_{2} \mathrm{C}$ and $\mathrm{Sel}_{2} \mathrm{~J}$ as a subset and subgroup of L^{\square}.

Odd Degree Hyperelliptic Curves

We want to turn this into an algorithm when $p=2$ and C is a hyperelliptic curve of odd degree.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J\left(\mathbb{Q}_{2}\right)$.

This can be done explicitly.

- If C is given as $y^{2}=f(x)$ and $L=\mathbb{Q}[x] /\langle f\rangle$, then have compatible maps
$\mu: \mathrm{J}(\mathbb{Q}) \rightarrow \frac{\mathrm{J}(\mathbb{Q})}{2 \mathrm{~J}(\mathbb{Q})} \hookrightarrow \mathrm{L}^{\square}, \quad \mu_{2}: \mathrm{J}\left(\mathbb{Q}_{2}\right) \rightarrow \frac{\mathrm{J}\left(\mathbb{Q}_{2}\right)}{2 \mathrm{~J}\left(\mathbb{Q}_{2}\right)} \hookrightarrow \mathrm{L}_{2}^{\square}, \quad \mathrm{r}: \mathrm{L}^{\square} \rightarrow \mathrm{L}_{2}^{\square}$, where $L_{2}=L \otimes_{\mathbb{Q}} \mathbb{Q}_{2}$ and $R^{\square}=R^{\times} /\left(R^{\times}\right)^{2}$.
- Can compute $\mathrm{Sel}_{2} \mathrm{C}$ and $\mathrm{Sel}_{2} \mathrm{~J}$ as a subset and subgroup of L^{\square}.
- So work with L^{\square} and L_{2}^{\square} instead of $J(\mathbb{Q}) / 2 J(\mathbb{Q})$ and $J\left(\mathbb{Q}_{2}\right) / 2 J\left(\mathbb{Q}_{2}\right)$.

The Algorithm

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(r) \cap \operatorname{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.
5. Set $R=\mu_{2}\left(J(\mathbb{Q})\left[2^{\infty}\right]\right) \subset L_{2}^{\square}$.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.
5. Set $R=\mu_{2}\left(J(\mathbb{Q})\left[2^{\infty}\right]\right) \subset L_{2}^{\square}$.
6. For each $X \in \mathcal{X}$, do:

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.
5. Set $R=\mu_{2}\left(J(\mathbb{Q})\left[2^{\infty}\right]\right) \subset L_{2}^{\square}$.
6. For each $X \in \mathcal{X}$, do:
a. If $X \cap C(\mathbb{Q})_{\text {known }}=\emptyset$:
if $\mu_{2}(X) \cap r\left(\operatorname{Sel}_{2} C\right) \neq \emptyset$ then return FAIL, else continue with next X.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.
5. Set $R=\mu_{2}\left(J(\mathbb{Q})\left[2^{\infty}\right]\right) \subset L_{2}^{\square}$.
6. For each $X \in \mathcal{X}$, do:
a. If $X \cap C(\mathbb{Q})_{\text {known }}=\emptyset$:
if $\mu_{2}(\mathrm{X}) \cap r\left(\mathrm{Sel}_{2} \mathrm{C}\right) \neq \emptyset$ then return FAIL, else continue with next X.
b. Pick $P_{0} \in X \cap C(\mathbb{Q})_{\text {known }}$ and compute $Y=\mu_{2}\left(q\left(i_{P_{0}}(X)+J(\mathbb{Q})\left[2^{\infty}\right]\right)\right)$

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.
5. Set $R=\mu_{2}\left(J(\mathbb{Q})\left[2^{\infty}\right]\right) \subset L_{2}^{\square}$.
6. For each $X \in \mathcal{X}$, do:
a. If $X \cap C(\mathbb{Q})_{\text {known }}=\emptyset$:
if $\mu_{2}(\mathrm{X}) \cap r\left(\mathrm{Sel}_{2} \mathrm{C}\right) \neq \emptyset$ then return FAIL, else continue with next X.
b. Pick $P_{0} \in X \cap C(\mathbb{Q})_{\text {known }}$ and compute $Y=\mu_{2}\left(q\left(i_{P_{0}}(X)+J(\mathbb{Q})\left[2^{\infty}\right]\right)\right)$
c. If $\mathrm{Y} \cap r\left(\mathrm{Sel}_{2} \mathrm{~J}\right) \not \subset \mathrm{R}$ then return FAIL.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.
5. Set $R=\mu_{2}\left(J(\mathbb{Q})\left[2^{\infty}\right]\right) \subset L_{2}^{\square}$.
6. For each $X \in \mathcal{X}$, do:
a. If $X \cap C(\mathbb{Q})_{\text {known }}=\emptyset$:
if $\mu_{2}(X) \cap r\left(\mathrm{Sel}_{2} \mathrm{C}\right) \neq \emptyset$ then return FAIL, else continue with next X.
b. Pick $P_{0} \in X \cap C(\mathbb{Q})_{\text {known }}$ and compute $Y=\mu_{2}\left(q\left(i_{P_{0}}(X)+J(\mathbb{Q})\left[2^{\infty}\right]\right)\right)$
c. If $\mathrm{Y} \cap r\left(\mathrm{Sel}_{2} \mathrm{~J}\right) \not \subset \mathrm{R}$ then return FAIL.
7. Return $C(\mathbb{Q})_{\text {known }}$.

The Algorithm

1. Compute $\mathrm{Sel}_{2} \mathrm{C} \subset \mathrm{Sel}_{2} \mathrm{~J} \subset \mathrm{~L}^{\square}$.
2. If $\operatorname{ker}(\mathrm{r}) \cap \mathrm{Sel}_{2} \mathrm{~J} \not \subset \mu\left(\mathrm{~J}(\mathbb{Q})\left[2^{\infty}\right]\right)$, then return FAIL.
3. Search for rational points on C; this gives $C(\mathbb{Q})_{\text {known }}$.
4. Let \mathcal{X} be a partition of $C\left(\mathbb{Q}_{2}\right)$ into (half) residue disks X.
5. Set $R=\mu_{2}\left(J(\mathbb{Q})\left[2^{\infty}\right]\right) \subset L_{2}^{\square}$.
6. For each $X \in \mathcal{X}$, do:
a. If $X \cap C(\mathbb{Q})_{\text {known }}=\emptyset$:
if $\mu_{2}(X) \cap r\left(\mathrm{Sel}_{2} \mathrm{C}\right) \neq \emptyset$ then return FAIL, else continue with next X.
b. Pick $P_{0} \in X \cap C(\mathbb{Q})_{\text {known }}$ and compute $Y=\mu_{2}\left(q\left(i_{P_{0}}(X)+J(\mathbb{Q})\left[2^{\infty}\right]\right)\right)$
c. If $\mathrm{Y} \cap r\left(\mathrm{Sel}_{2} \mathrm{~J}\right) \not \subset \mathrm{R}$ then return FAIL.
7. Return $\mathrm{C}(\mathbb{Q})_{\text {known }}$.

Remark. Can leave out 2-adic condition for $\mathrm{Sel}_{2} \mathrm{~J}$.

Applications

Applications

(1) $5 y^{2}=4 x^{p}+1$:

Obtain a three-element set $Z \subset \mathbb{Q}_{2}(\sqrt[p]{2})^{\square}$ that $r\left(\operatorname{Sel}_{2} J_{p}\right)$ has to avoid; also check that $\left.r\right|_{\text {Sel }_{2} J_{p}}$ is injective.

Applications

(1) $5 y^{2}=4 x^{p}+1$:

Obtain a three-element set $Z \subset \mathbb{Q}_{2}(\sqrt[p]{2})^{\square}$ that $r\left(\operatorname{Sel}_{2} J_{p}\right)$ has to avoid; also check that $\mathrm{r}_{\mathrm{Sel}_{2} \mathrm{~J}_{\mathrm{p}}}$ is injective. This gives

Theorem.

$x^{5}+y^{5}=z^{p}$ has only trivial solutions for $p \leq 53$ (under GRH for $p \geq 23$).

Applications

(1) $5 y^{2}=4 x^{p}+1$:

Obtain a three-element set $Z \subset \mathbb{Q}_{2}(\sqrt[p]{2})^{\square}$ that $r\left(\operatorname{Sel}_{2} J_{p}\right)$ has to avoid; also check that $\mathrm{r}_{\mathrm{Sel}_{2} \mathrm{~J}_{\mathrm{p}}}$ is injective. This gives

Theorem.

$x^{5}+y^{5}=z^{p}$ has only trivial solutions for $p \leq 53$ (under GRH for $p \geq 23$).
(2) Similar application to FLT (via $y^{2}=4 x^{p}+1$).

Applications

(1) $5 y^{2}=4 x^{p}+1$:

Obtain a three-element set $Z \subset \mathbb{Q}_{2}(\sqrt[p]{2})^{\square}$ that $r\left(\mathrm{Sel}_{2} \mathrm{~J}_{\mathrm{p}}\right)$ has to avoid; also check that $\mathrm{r}_{\mathrm{Sel}_{2} J_{p}}$ is injective. This gives

Theorem.

$x^{5}+y^{5}=z^{p}$ has only trivial solutions for $p \leq 53$ (under GRH for $p \geq 23$).
(2) Similar application to FLT (via $y^{2}=4 x^{p}+1$).
(3) The set of integral points on $Y^{2}-Y=X^{21}-X$ is $\{-1,0,1\} \times\{0,1\}$.

Applications

(1) $5 y^{2}=4 x^{p}+1$:

Obtain a three-element set $Z \subset \mathbb{Q}_{2}(\sqrt[p]{2})^{\square}$ that $r\left(\operatorname{Sel}_{2} J_{p}\right)$ has to avoid; also check that $\mathrm{r}_{\mathrm{Sel}_{2} J_{\mathrm{p}}}$ is injective. This gives

Theorem.

$x^{5}+y^{5}=z^{p}$ has only trivial solutions for $p \leq 53$ (under GRH for $p \geq 23$).
(2) Similar application to FLT (via $y^{2}=4 x^{p}+1$).
(3) The set of integral points on $Y^{2}-Y=X^{21}-X$ is $\{-1,0,1\} \times\{0,1\}$.
(4) Elliptic curve Chabauty variant proves that the only rational points on $y^{2}=81 x^{10}+420 x^{9}+1380 x^{8}+1860 x^{7}+3060 x^{6}-66 x^{5}+3240 x^{4}-1740 x^{3}+1320 x^{2}-480 x+69$ are the two points at infinity.
(Note: $g=\operatorname{rank} J(\mathbb{Q})=4$.)

Applications

(1) $5 y^{2}=4 x^{p}+1$:

Obtain a three-element set $Z \subset \mathbb{Q}_{2}(\sqrt[p]{2})^{\square}$ that $r\left(\mathrm{Sel}_{2} \mathrm{~J}_{\mathrm{p}}\right)$ has to avoid; also check that $\mathrm{r}_{\mathrm{Sel}_{2} J_{\mathrm{p}}}$ is injective. This gives

Theorem.

$x^{5}+y^{5}=z^{p}$ has only trivial solutions for $p \leq 53$ (under GRH for $p \geq 23$).
(2) Similar application to FLT (via $y^{2}=4 x^{p}+1$).
(3) The set of integral points on $Y^{2}-Y=X^{21}-X$ is $\{-1,0,1\} \times\{0,1\}$.
(4) Elliptic curve Chabauty variant proves that the only rational points on
$y^{2}=81 x^{10}+420 x^{9}+1380 x^{8}+1860 x^{7}+3060 x^{6}-66 x^{5}+3240 x^{4}-1740 x^{3}+1320 x^{2}-480 x+69$
are the two points at infinity.
(Note: $g=\operatorname{rank} J(\mathbb{Q})=4$.)
(5) More to come!

Thank You!

