

Chabauty without the Mordell-Weil group

Michael Stoll Universität Bayreuth

Jahrestagung SPP 1489

Osnabrück September 29, 2015

Example

Say, we would like to solve the Generalized Fermat Equation

 $x^5 + y^5 = z^{17}$.

Example

Say, we would like to solve the Generalized Fermat Equation

 $x^5 + y^5 = z^{17}$.

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

$$C_p\colon 5y^2 = 4x^p + 1$$

are the obvious ones (namely, ∞ and $(1, \pm 1)$), then the only primitive integral solutions of $x^5 + y^5 = z^p$ are the trivial ones.

Example

Say, we would like to solve the Generalized Fermat Equation

 $x^5 + y^5 = z^{17}$.

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

$$C_p\colon 5y^2 = 4x^p + 1$$

are the obvious ones (namely, ∞ and $(1, \pm 1)$), then the only primitive integral solutions of $x^5 + y^5 = z^p$ are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19and deal with p = 11 and p = 13 in another way, assuming GRH.)

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

The usual approach is to embed C_{17} into its Jacobian variety J_{17} , to determine the group $J_{17}(\mathbb{Q})$ (up to finite index), and then to apply Chabauty's method (which uses p-adic analysis to isolate $C_{17}(\mathbb{Q})$ inside $J_{17}(\mathbb{Q})$).

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

The usual approach is to embed C_{17} into its Jacobian variety J_{17} , to determine the group $J_{17}(\mathbb{Q})$ (up to finite index), and then to apply Chabauty's method (which uses p-adic analysis to isolate $C_{17}(\mathbb{Q})$ inside $J_{17}(\mathbb{Q})$).

The first step is to compute the 2-Selmer group $Sel_2 J_{17} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Since $J_{17}(\mathbb{Q})[2] = 0$, this gives $\operatorname{rank} J_{17}(\mathbb{Q}) \leq 2$. We know the point $[(1,1) - \infty]$ of infinite order, so $\operatorname{rank} J_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of Sha) therefore $\operatorname{rank} J_{17}(\mathbb{Q}) = 2$.

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

The usual approach is to embed C_{17} into its Jacobian variety J_{17} , to determine the group $J_{17}(\mathbb{Q})$ (up to finite index), and then to apply Chabauty's method (which uses p-adic analysis to isolate $C_{17}(\mathbb{Q})$ inside $J_{17}(\mathbb{Q})$).

The first step is to compute the 2-Selmer group $Sel_2 J_{17} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Since $J_{17}(\mathbb{Q})[2] = 0$, this gives $\operatorname{rank} J_{17}(\mathbb{Q}) \leq 2$. We know the point $[(1,1) - \infty]$ of infinite order, so $\operatorname{rank} J_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of Sha) therefore $\operatorname{rank} J_{17}(\mathbb{Q}) = 2$.

But we are unable to find another independent point, so we cannot proceed with Chabauty's method.

Let C be a nice curve of genus g over \mathbb{Q} .

Let C be a nice curve of genus g over \mathbb{Q} .

1. Compute a Selmer group $Sel_p J$, where J = Jac(C).

Let C be a nice curve of genus g over \mathbb{Q} .

1. Compute a Selmer group $Sel_p J$, where J = Jac(C). **Global Part:** Class groups and units of number fields

Let C be a nice curve of genus g over \mathbb{Q} .

- 1. Compute a Selmer group $Sel_p J$, where J = Jac(C). Global Part: Class groups and units of number fields
 - Usually OK for p = 2, C hyperelliptic, moderate g (GRH).

Let C be a nice curve of genus g over \mathbb{Q} .

Compute a Selmer group Sel_p J, where J = Jac(C).
 Global Part: Class groups and units of number fields

 Usually OK for p = 2, C hyperelliptic, moderate g (GRH).
 Local Part: Computation of J(Qℓ)/pJ(Qℓ) for bad primes ℓ; worst case is ℓ = p.

Let C be a nice curve of genus g over \mathbb{Q} .

- **1.** Compute a Selmer group $Sel_p J$, where J = Jac(C). **Global Part:** Class groups and units of number fields
 - Usually OK for p = 2, C hyperelliptic, moderate g (GRH).
 - **Local Part:** Computation of $J(\mathbb{Q}_{\ell})/pJ(\mathbb{Q}_{\ell})$ for bad primes ℓ ; worst case is $\ell = p$.
 - Can get painful even for p = 2 and moderate g.

Let C be a nice curve of genus g over \mathbb{Q} .

- Compute a Selmer group Sel_p J, where J = Jac(C).
 Global Part: Class groups and units of number fields
 Usually OK for p = 2, C hyperelliptic, moderate g (GRH).
 - **Local Part:** Computation of $J(\mathbb{Q}_{\ell})/pJ(\mathbb{Q}_{\ell})$ for bad primes ℓ ; worst case is $\ell = p$.
 - Can get painful even for p = 2 and moderate g.
- **2.** Find $P_1, \ldots, P_r \in J(\mathbb{Q})$ such that $\langle P_1, \ldots, P_r \rangle + J(\mathbb{Q})_{\text{tors}} \longrightarrow \text{Sel}_p J$.

Let C be a nice curve of genus g over \mathbb{Q} .

1. Compute a Selmer group $Sel_p J$, where J = Jac(C).

- Usually OK for p = 2, C hyperelliptic, moderate g (GRH).
 Local Part: Computation of J(Qℓ)/pJ(Qℓ) for bad primes ℓ; worst case is ℓ = p.
- Can get painful even for p = 2 and moderate g.
- 2. Find $P_1, \ldots, P_r \in J(\mathbb{Q})$ such that $\langle P_1, \ldots, P_r \rangle + J(\mathbb{Q})_{tors} \longrightarrow Sel_p J$. **Problems:** rank bound not tight, large generators, high-dimensional search space.

Let C be a nice curve of genus g over \mathbb{Q} .

1. Compute a Selmer group $Sel_p J$, where J = Jac(C).

- Usually OK for p = 2, C hyperelliptic, moderate g (GRH).
 Local Part: Computation of J(Qℓ)/pJ(Qℓ) for bad primes ℓ; worst case is ℓ = p.
- Can get painful even for p = 2 and moderate g.
- 2. Find $P_1, \ldots, P_r \in J(\mathbb{Q})$ such that $\langle P_1, \ldots, P_r \rangle + J(\mathbb{Q})_{tors} \longrightarrow Sel_p J$. **Problems:** rank bound not tight, large generators, high-dimensional search space.
 - The most serious stumbling block in many cases.

Let C be a nice curve of genus g over \mathbb{Q} .

1. Compute a Selmer group $Sel_p J$, where J = Jac(C).

- Usually OK for p = 2, C hyperelliptic, moderate g (GRH).
 Local Part: Computation of J(Qℓ)/pJ(Qℓ) for bad primes ℓ; worst case is ℓ = p.
- Can get painful even for p = 2 and moderate g.
- 2. Find $P_1, \ldots, P_r \in J(\mathbb{Q})$ such that $\langle P_1, \ldots, P_r \rangle + J(\mathbb{Q})_{tors} \longrightarrow Sel_p J$. **Problems:** rank bound not tight, large generators, high-dimensional search space.
 - The most serious stumbling block in many cases.
- **3.** If r < g, use Chabauty plus Mordell-Weil Sieve to determine $C(\mathbb{Q})$.

Let C be a nice curve of genus g over \mathbb{Q} .

1. Compute a Selmer group $Sel_p J$, where J = Jac(C).

- Usually OK for p = 2, C hyperelliptic, moderate g (GRH).
 Local Part: Computation of J(Qℓ)/pJ(Qℓ) for bad primes ℓ; worst case is ℓ = p.
- Can get painful even for p = 2 and moderate g.
- 2. Find $P_1, \ldots, P_r \in J(\mathbb{Q})$ such that $\langle P_1, \ldots, P_r \rangle + J(\mathbb{Q})_{tors} \longrightarrow Sel_p J$. **Problems:** rank bound not tight, large generators, high-dimensional search space.
 - The most serious stumbling block in many cases.
- **3.** If r < g, use Chabauty plus Mordell-Weil Sieve to determine $C(\mathbb{Q})$.
 - If we get here, we usually win!

In joint work with Bjorn Poonen we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross) to show that Chabauty's method at p = 2 applies to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q}) = \{\infty\}$.

In joint work with Bjorn Poonen we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross) to show that Chabauty's method at p = 2 applies to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q}) = \{\infty\}$.

The idea is to make this work for concrete curves C to show that $C(\mathbb{Q})$ does not contain unknown points.

In joint work with Bjorn Poonen we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross) to show that Chabauty's method at p = 2 applies to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q}) = \{\infty\}$.

The idea is to make this work for concrete curves C to show that $C(\mathbb{Q})$ does not contain unknown points.

Pro: No need to find many independent points in $J(\mathbb{Q})$.

In joint work with Bjorn Poonen we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross) to show that Chabauty's method at p = 2 applies to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q}) = \{\infty\}$.

The idea is to make this work for concrete curves C to show that $C(\mathbb{Q})$ does not contain unknown points.

Pro: No need to find many independent points in $J(\mathbb{Q})$. **Con:** Does not always work, even when Selmer rank < g.

In joint work with Bjorn Poonen we used only the 2-Selmer group and its statistical behavior (as determined by Bhargava and Gross) to show that Chabauty's method at p = 2 applies to 'most' hyperelliptic curves C of odd degree to show $C(\mathbb{Q}) = \{\infty\}$.

The idea is to make this work for concrete curves C to show that $C(\mathbb{Q})$ does not contain unknown points.

Pro: No need to find many independent points in $J(\mathbb{Q})$. **Con:** Does not always work, even when Selmer rank < g. **Pro:** Necessary conditions are likely satisfied when g is not very small.

Setting:

 \mathbb{C}/\mathbb{Q} nice curve with Jacobian J;

 $P_0 \in C(\mathbb{Q})$, gives embedding $i: C \hookrightarrow J$;

 $\Gamma \subset J(\mathbb{Q})$ a subgroup with saturation $\overline{\Gamma}$;

p a prime number; $X \subset C(\mathbb{Q}_p)$, e.g., a residue disk.

Setting:

 $\begin{array}{l} C/\mathbb{Q} \mbox{ nice curve with Jacobian J;} \\ P_0 \in C(\mathbb{Q}), \mbox{ gives embedding } i : C \hookrightarrow J; \\ \Gamma \subset J(\mathbb{Q}) \mbox{ a subgroup with saturation } \overline{\Gamma}; \\ p \mbox{ a prime number; } X \subset C(\mathbb{Q}_p), \mbox{ e.g., a residue disk.} \end{array}$

For $P\in J(\mathbb{Q}_p)$ set

$$\begin{split} q(\mathsf{P}) &= \left\{ \pi_p(Q) : Q \in J(\mathbb{Q}_p), \exists n \geq 0 \colon p^n Q = \mathsf{P} \right\} \subset \frac{J(\mathbb{Q}_p)}{pJ(\mathbb{Q}_p)} \\ \text{where } \pi_p \colon J(\mathbb{Q}_p) \to J(\mathbb{Q}_p)/pJ(\mathbb{Q}_p), \\ \text{and for } S \subset J(\mathbb{Q}_p) \text{ set } q(S) = \bigcup_{P \in S} q(P). \end{split}$$

$$\begin{split} &\Gamma\subset J(\mathbb{Q}) \text{ subgroup with saturation }\overline{\Gamma} \\ &q(\mathsf{P})=\big\{\pi_p(Q):Q\in J(\mathbb{Q}_p), \exists n\geq 0\colon p^nQ=\mathsf{P}\big\} \end{split}$$

$$\begin{split} \Gamma \subset J(\mathbb{Q}) \text{ subgroup with saturation } \overline{\Gamma} \\ q(P) &= \left\{ \pi_p(Q) : Q \in J(\mathbb{Q}_p), \exists n \geq 0 \colon p^n Q = P \right\} \\ C(\mathbb{Q}) \cap X \longrightarrow C(\mathbb{Q}) \stackrel{i}{\longrightarrow} J(\mathbb{Q}) \stackrel{\pi}{\longrightarrow} \frac{J(\mathbb{Q})}{nI(\mathbb{Q})} \stackrel{\delta}{\longrightarrow} Set \end{split}$$

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(i(X) + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset i^{-1}(\overline{\Gamma})$.

$$\begin{split} &\Gamma \subset J(\mathbb{Q}) \text{ subgroup with saturation } \overline{\Gamma} \\ &\mathsf{q}(\mathsf{P}) = \big\{ \pi_p(Q) : Q \in J(\mathbb{Q}_p), \exists n \geq 0 \colon p^n Q = \mathsf{P} \big\} \end{split}$$

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(i(X) + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset i^{-1}(\overline{\Gamma})$.

Corollary.

If $P_0 \in X$, X is contained in (half) a residue disk, ker $\sigma \subset \delta \pi(J(\mathbb{Q})[p^{\infty}])$ and $q(i(X) + J(\mathbb{Q})[p^{\infty}]) \cap \text{im } \sigma \subset \pi_p(J(\mathbb{Q})[p^{\infty}])$, then

 $C(\mathbb{Q}) \cap X = \{P_0\}.$

We want to turn this into an algorithm when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly.
- If C is given as $y^2 = f(x)$ and $L = \mathbb{Q}[x]/\langle f \rangle$, then have compatible maps $\mu \colon J(\mathbb{Q}) \to \frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \hookrightarrow L^{\Box}$, $\mu_2 \colon J(\mathbb{Q}_2) \to \frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)} \hookrightarrow L_2^{\Box}$, $r \colon L^{\Box} \to L_2^{\Box}$, where $L_2 = L \otimes_{\mathbb{Q}} \mathbb{Q}_2$ and $R^{\Box} = R^{\times}/(R^{\times})^2$.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly.
- If C is given as $y^2 = f(x)$ and $L = \mathbb{Q}[x]/\langle f \rangle$, then have compatible maps $\mu: J(\mathbb{Q}) \to \frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \hookrightarrow L^{\Box}, \quad \mu_2: J(\mathbb{Q}_2) \to \frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)} \hookrightarrow L_2^{\Box}, \quad r: L^{\Box} \to L_2^{\Box},$ where $L_2 = L \otimes_{\mathbb{Q}} \mathbb{Q}_2$ and $R^{\Box} = R^{\times}/(R^{\times})^2$.
- Can compute $\operatorname{Sel}_2 C$ and $\operatorname{Sel}_2 J$ as a subset and subgroup of L^{\Box} .

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly.
- If C is given as $y^2 = f(x)$ and $L = \mathbb{Q}[x]/\langle f \rangle$, then have compatible maps $\mu: J(\mathbb{Q}) \to \frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \hookrightarrow L^{\Box}, \quad \mu_2: J(\mathbb{Q}_2) \to \frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)} \hookrightarrow L_2^{\Box}, \quad r: L^{\Box} \to L_2^{\Box},$ where $L_2 = L \otimes_{\mathbb{Q}} \mathbb{Q}_2$ and $R^{\Box} = R^{\times}/(R^{\times})^2$.
- Can compute $\operatorname{Sel}_2 C$ and $\operatorname{Sel}_2 J$ as a subset and subgroup of L^{\Box} .
- So work with L^{\square} and L_2^{\square} instead of $J(\mathbb{Q})/2J(\mathbb{Q})$ and $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^\square$.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^\square$.
- 6. For each $X \in \mathcal{X}$, do:

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^\square$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$:

if $\mu_2(X) \cap r(\text{Sel}_2 \mathbb{C}) \neq \emptyset$ then return FAIL, else continue with next X.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^\square$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$: if $\mu_2(X) \cap r(\operatorname{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.
 - b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(i_{P_0}(X) + J(\mathbb{Q})[2^{\infty}]))$

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^\square$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$: if $\mu_2(X) \cap r(\text{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.
 - b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(i_{P_0}(X) + J(\mathbb{Q})[2^{\infty}]))$
 - c. If $Y \cap r(\text{Sel}_2 J) \not\subset R$ then return FAIL.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^\square$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$: if $\mu_2(X) \cap r(\text{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.
 - b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(i_{P_0}(X) + J(\mathbb{Q})[2^{\infty}]))$
 - c. If $Y \cap r(\text{Sel}_2 J) \not\subset R$ then return FAIL.
- 7. Return $C(\mathbb{Q})_{known}$.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^\square$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$: if $\mu_2(X) \cap r(\text{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.
 - b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(\mathfrak{i}_{P_0}(X) + J(\mathbb{Q})[2^\infty]))$
 - c. If $Y \cap r(Sel_2 J) \not\subset R$ then return FAIL.
- 7. Return $C(\mathbb{Q})_{known}$.

Remark. Can leave out 2-adic condition for Sel₂ J.

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective.

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

(2) Similar application to FLT (via $y^2 = 4x^p + 1$).

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\Box}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

- (2) Similar application to FLT (via $y^2 = 4x^p + 1$).
- (3) The set of integral points on $Y^2 Y = X^{21} X$ is $\{-1, 0, 1\} \times \{0, 1\}$.

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

- (2) Similar application to FLT (via $y^2 = 4x^p + 1$).
- (3) The set of integral points on $Y^2 Y = X^{21} X$ is $\{-1, 0, 1\} \times \{0, 1\}$.
- (4) Elliptic curve Chabauty variant proves that the only rational points on $y^2 = 81x^{10} + 420x^9 + 1380x^8 + 1860x^7 + 3060x^6 - 66x^5 + 3240x^4 - 1740x^3 + 1320x^2 - 480x + 69$ are the two points at infinity.

(Note: $g = \operatorname{rank} J(\mathbb{Q}) = 4.$)

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\Box}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

- (2) Similar application to FLT (via $y^2 = 4x^p + 1$).
- (3) The set of integral points on $Y^2 Y = X^{21} X$ is $\{-1, 0, 1\} \times \{0, 1\}$.
- (4) Elliptic curve Chabauty variant proves that the only rational points on $y^2 = 81x^{10} + 420x^9 + 1380x^8 + 1860x^7 + 3060x^6 - 66x^5 + 3240x^4 - 1740x^3 + 1320x^2 - 480x + 69$ are the two points at infinity. (Note: q = rank J(Q) = 4.)

(5) More to come!

Thank You!