FB 6 Mathematik/Informatik/Physik

Institut für Mathematik


Osnabrück University navigation and search


Main content

Top content

Episodic Cognition

8.3386

Dozenten

Beschreibung

Episodic cognition comprises episodic memory and episodic future thinking. (The term “episodic memory” is much more known than the other terms, “episodic future thinking” or “episodic cognition”.) If episodic memory is the memory of daily personal experiences (“things that happened to me yesterday, or 10 years ago”), then episodic future thinking is the prospection of things that may happen to me tomorrow or in 10 years. Importantly, episodes (past or future) carry www information: what, where and when. That is, the content of our memory (what happened) is remembered in its spatio-temporal context (where, when). That’s why this kind of memory is also called “relational” memory. The same holds for episodic future thinking: I am imagining myself experiencing something at a certain place and time. How do I do this? By mental time travel, i.e., I project myself into my personal past or future. Mental time travel is characterized by chronesthesia – a sense of time and autonoesis – a sense of self: knowing that this has happened/will happen to me.
In this course, we will discuss various aspects of episodic cognition:
How episodic memory differs from semantic memory and from autobiographic memory in the memory taxonomy.
How philosophers conceive of episodic cognition: Is it a “natural kind”? – as compared to other forms of memory, in particular when we consider its sequential character. What does it “feel like” to have an episodic memory, how do these past (or future) episodes appear to us (phenomenologically)?
Which (distinct) brain areas support episodic memory and future thinking? Prime candidates are the hippocampus with its place and time cells and the Medial Temporal Lobe (MTL).
How does episodic cognition develop in children? Endel Tulving (who is a big figure in episodic memory research) claimed that children under 4 years of age do not have episodic memory at all! Now we know that episodic memory develops heavily between 3-5 years of age (and episodic future thinking a bit later). We also have an idea which cognitive abilities support it (executive function, language).
When we think of a past or envision a future episode we often detach our eye-gaze from the objects around us or our interlocutor and look into the void (e.g., we stare at the ceiling or into the sky). Do such “non-visual eye-movements” tell us anything about episodic cognition? Do we construct our episodes mentally while we are seemingly “looking at nothing”?
Do non-human animals have episodic cognition? For a long time this was not held possible (mainly because they cannot tell you!). Animals were thought to be “stuck in time”, i.e., not capable of mental time travel. However, with appropriate methodology and concepts we nowadays grant “episodic-like” memory and future thinking to them. Interestingly, also animals in whom you would not suspect it have quite remarkable episodic cognitive abilities, e.g. jays (big-brained birds.)
Lastly, can you also conceive of things in the past that could have been? Certainly, but do such “episodic counter-factuals” resemble true episodic memories in terms of the cognitive processes and brain areas supporting them?
Episodic cognition is obviously highly relevant for us humans, in our daily life and at an existential level: Who would we be without our personal memories and our envisioned future? In our seminar, we will discuss these (and more) questions concerning episodic cognition, in an interdisciplinary cognitive science perspective.

Weitere Angaben

Ort: 93/E07
Zeiten: Mi. 09:00 - 12:00 (wöchentlich)
Erster Termin: Mittwoch, 03.04.2024 09:00 - 12:00, Ort: 93/E07
Veranstaltungsart: Seminar (Offizielle Lehrveranstaltungen)

Studienbereiche

  • Cognitive Science > Bachelor-Programm
  • Cognitive Science > Master-Programm
  • Schnupper Uni > Cognitive Science
  • Human Sciences (e.g. Cognitive Science, Psychology)
  • Cognitive Science

Research Areas:

  • Algebraic geometry 14-XX

  • K-theory 19-XX

  • Algebraic topology 55-XX

Publications in MathSciNet

Publications in Zentralblatt

Publications:

  • Cellularity of hermitian K-theory and Witt-theory  (with Markus Spitzweck and Paul Arne Østvær)
  • On the η-inverted sphere. K-Theory-Proceedings of the International Colloquium
  • Gigantic random simplicial complexes Link (with Jens Grygierek, Martina Juhnke-Kubitzke, Matthias Reitzner and Tim Römer)
  • On very effective hermitian K-theory Link (with Alexey Ananyevskiy and Paul Arne Østvær)
  • The first stable homotopy groups of motivic spheres DOI (with Markus Spitzweck and Paul Arne Østvær)
  • Vanishing in stable motivic homotopy sheaves (with Kyle Ormsby and Paul Arne Østvær) Link
  • The multiplicative structure on the graded slices of hermitian K-theory and Witt-theory (with Paul Arne Østvær) Link
  • Slices of hermitian K–theory and Milnor's conjecture on quadratic forms (with Paul Arne Østvær) Link
  • Calculus of functors and model categories, II (with Georg Biedermann) Link
  • The Arone-Goodwillie spectral sequence for Σ∞Ωn and topological realization at odd primes (with Sebastian Buescher, Fabian Hebestreit und Manfred Stelzer) Link
  • Motivic slices and coloured operads (with Javier Gutierrez, Markus Spitzweck and Paul Arne Østvær) Link
  • Motivic strict ring models for K-theory (with Markus Spitzweck and Paul Arne Østvær) PDF
  • Theta characteristics and stable homotopy types of curves DOI
  • A universality theorem for Voevodsky's algebraic cobordism spectrum (with Ivan Panin and Konstantin Pimenov) Link
  • On the relation of Voevodsky's algebraic cobordism to Quillen's K-theory DOI (with Ivan Panin and Konstantin Pimenov)
  • On Voevodsky's algebraic K-theory spectrum BGL (with Ivan Panin and Konstantin Pimenov)
  • Rigidity in motivic homotopy theory DOI (with Paul Arne Østvær)
  • Calculus of functors and model categories DOI (with Georg Biedermann and Boris Chorny)
  • Motivic Homotopy Theory Link (with B.I.Dundas, M.Levine, P.A.Østvær and V.Voevodsky)
  • Motives and modules over motivic cohomology Link (with Paul Arne Østvær)
  • Modules over motivic cohomology DOI (with Paul Arne Østvær)
  • Enriched functors and stable homotopy theory Link (with Bjørn Ian Dundas and Paul Arne Østvær)
  • Motivic functors Link (with Bjørn Ian Dundas and Paul Arne Østvær)

Preprints and Talks:

  • Motives, homotopy theory of varieties, and dessins d'enfants PDF
  • GQT Graduate School PDF

Projekte

  • DFG-Sachbeihilfe "Algebraic bordism spectra: Computations, filtrations, applications"  (DFG-RSF-Antrag mit Alexey Ananyevskiy)
  • DFG-Sachbeihilfe "Applying motivic filtrations" (mit Marc Levine und Markus Spitzweck) im DFG Schwerpunktprogramm 1786
  • DFG-Sachbeihilfe "Operads in algebraic geometry and their realizations" (mit Jens Hornbostel,
    Markus Spitzweck und Manfred Stelzer) im DFG Schwerpunktprogramm 1786
  • DFG Sachbeihilfe ``Operad structures in motivic homotopy theory'' im DFG Schwerpunktprogramm 1786 ``Homotopy theory and algebraic geometry'' (mit Markus Spitzweck)
  • DFG Sachbeihilfe ``Motivic filtrations over Dedekind domains'' im DFG Schwerpunktprogramm 1786 ``Homotopy theory and algebraic geometry'' (mit Marc Levine und Markus Spitzweck)
  • DFG Graduiertenkolleg 1916 ``Combinatorial structures in geometry''
  • DFG Sachbeihilfe ``Goodwillie towers, realizations, and En-structures''
  • Graduiertenkolleg ``Combinatorial structures in algebra and topology'' (mit H. Brenner, W. Bruns, T. Römer und R. Vogt)
  • DFG Sachbeihilfe ``Combinatorial structures in algebra and topology'' (mit H. Brenner, W. Bruns, T. Römer und R. Vogt)

Supervision

PhD

  • Philip Herrmann: Stable equivariant motivic homotopy theory and motivic Borel cohomology, 2012

  • Florian Strunk: On motivic spherical bundles, 2013

Master/Diplom

  1. Markus Severitt: Motivic Homotopy Types of Projective Curves, 2006 PDF

  2. Philip Herrmann: Ein Modell für die motivische Homotopiekategorie, 2009

  3. Florian Strunk: Ein Modell für motivische Kohomologie, 2009

  4. Sebastian Büscher: Anwendung der F2-kohomologischen Goodwillie-Spektralsequenz für iterierte Schleifenraeume, 2010

  5. Fabian Hebestreit: On topological realization at odd primes, 2010

  6. Katharina Lorenz: Darstellung unterschiedlicher mathematischer Rekonstruktionen von Größen, 2012

  7. Jana Brickwedde: Fehlvorstellungen zum Grenzwertbegriff, 2015

  8. Lena-Christin Müller: Penrose-Parkettierungen und ihre Eigenschaften, 2015

  9. Larissa Bauland: Der Satz von Seifert-van Kampen und einige seiner Anwendungen, 2018

  10. Nikolaus Krause: Eine algebraische Einfuehrung in die Milnor-Witt K-Theorie, 2019

Bachelor

  1. Ein Spezialfall des letzten Satzes von Fermat, 2010

  2. Transzendente Zahlen, 2010

  3. Zur Gruppe des Rubik-Wuerfels, 2011

  4. Einige Betrachtungen zum letzten Satz von Fermat, 2012

  5. Die Involution auf algebraischer K-Theorie, 2012

  6. Platonische und Archimedische Körper, 2012

  7. Klassifikation regulärer Polyeder, 2013

  8. Grundbegriffe der Trigonometrie und ihrer Umsetzung in der gymnasialen Sekundarstufe I, 2014

  9. Die Riemann’sche Zetafunktion und der Primzahlsatz, 2014

  10. Konstruktion der klassischen Zahlbereiche, 2014

  11. Eigenschaften und spezielle Werte der Riemann'schen Zetafunktion, 2015

  12. Das quadratische Reziprozitätsgesetz und dessen Bedeutung in der Kryptographie, 2015

  13. Graphen färben, 2015

  14. Klassifikation und Visualisierung von Koniken, 2016

  15. Konstruktion von Polygonen mit einem einzigen Schnitt, 2016

  16. Parkettierungen der Ebene durch kongruente konvexe Fuenfecke, 2019

  17. Die klassischen Hopf-Faserbuendel und einige ihrer Eigenschaften, 2019

  18. Einige Anmerkungen mathematischer und historischer Natur zu Fermats Letztem Satz, 2019